首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   16篇
  国内免费   1篇
电工技术   4篇
化学工业   72篇
金属工艺   3篇
机械仪表   7篇
建筑科学   9篇
矿业工程   2篇
能源动力   16篇
轻工业   24篇
水利工程   3篇
石油天然气   1篇
无线电   17篇
一般工业技术   40篇
冶金工业   23篇
原子能技术   6篇
自动化技术   80篇
  2023年   4篇
  2022年   2篇
  2021年   16篇
  2020年   11篇
  2019年   17篇
  2018年   16篇
  2017年   13篇
  2016年   19篇
  2015年   11篇
  2014年   19篇
  2013年   27篇
  2012年   19篇
  2011年   27篇
  2010年   19篇
  2009年   19篇
  2008年   8篇
  2007年   14篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1969年   1篇
排序方式: 共有307条查询结果,搜索用时 31 毫秒
1.
The Egyptian oil and gas industry is suffering from severe metal corrosion problems, particularly microbial-induced corrosion. There is limited knowledge on the corrosion inhibition of carbon steels in the presence of an acidophilic, iron-oxidizing bacterial species Acidithiobacillus ferrooxidans. Therefore, in this study, novel Gemini cationic surfactants, in three forms depending on variation in alkyl chains of 8, 12, and 16 carbon atoms named FHPAO, FHPAD, and FHPAH, respectively, were synthesized and characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy. The surface parameters and the thermodynamic of the synthesized surfactants were evaluated at three different temperatures, 20, 40, and 60 °C. The synthesized Gemini cationic surfactants were tested as broad-spectrum antimicrobial, antibacterial and anticandida agents. They evaluated as biocides and corrosion inhibitors against Acidithiobacillus ferrooxidans. FHPAD showed higher adsorption ability at the solution interface and higher affinity to construct micelles than FHPAO and FHPAH. Both adsorption and micellization processes were hydrophobic and temperature dependent. FHPAO, FHPAD and FHPAH exhibited wide-spectrum antimicrobial activities, and the highest activity and the lowest minimum bactericidal/fungicidal inhibitory concentrations were attributed to FHPAD. Furthermore, synthesized FHPAD demonstrated the highest metal corrosion inhibition efficiency of 95.5% at 5 mM in comparison to 87.5% and 81.7% for FHPAO and FHPAH, respectively. In conclusion, this study provides novel synthesized cationic surfactants with many applications in the oil and gas industry, such as broad-spectrum antimicrobial, biocides, and corrosion inhibitors for acidophilic, iron-oxidizing bacterial species Acidithiobacillus ferrooxidans.  相似文献   
2.
3.
Over the past few decades, face recognition has become the most effective biometric technique in recognizing people’s identity, as it is widely used in many areas of our daily lives. However, it is a challenging technique since facial images vary in rotations, expressions, and illuminations. To minimize the impact of these challenges, exploiting information from various feature extraction methods is recommended since one of the most critical tasks in face recognition system is the extraction of facial features. Therefore, this paper presents a new approach to face recognition based on the fusion of Gabor-based feature extraction, Fast Independent Component Analysis (FastICA), and Linear Discriminant Analysis (LDA). In the presented method, first, face images are transformed to grayscale and resized to have a uniform size. After that, facial features are extracted from the aligned face image using Gabor, FastICA, and LDA methods. Finally, the nearest distance classifier is utilized to recognize the identity of the individuals. Here, the performance of six distance classifiers, namely Euclidean, Cosine, Bray-Curtis, Mahalanobis, Correlation, and Manhattan, are investigated. Experimental results revealed that the presented method attains a higher rank-one recognition rate compared to the recent approaches in the literature on four benchmarked face datasets: ORL, GT, FEI, and Yale. Moreover, it showed that the proposed method not only helps in better extracting the features but also in improving the overall efficiency of the facial recognition system.  相似文献   
4.
The convergence of materials science, electronics, and biology, namely bioelectronic interfaces, leads novel and precise communication with biological tissue, particularly with the nervous system. However, the translation of lab-based innovation toward clinical use calls for further advances in materials, manufacturing and characterization paradigms, and design rules. Herein, a translational framework engineered to accelerate the deployment of microfabricated interfaces for translational research is proposed and applied to the soft neurotechnology called electronic dura mater, e-dura. Anatomy, implant function, and surgical procedure guide the system design. A high-yield, silicone-on-silicon wafer process is developed to ensure reproducible characteristics of the electrodes. A biomimetic multimodal platform that replicates surgical insertion in an anatomy-based model applies physiological movement, emulates therapeutic use of the electrodes, and enables advanced validation and rapid optimization in vitro of the implants. Functionality of scaled e-dura is confirmed in nonhuman primates, where epidural neuromodulation of the spinal cord activates selective groups of muscles in the upper limbs with unmet precision. Performance stability is controlled over 6 weeks in vivo. The synergistic steps of design, fabrication, and biomimetic in vitro validation and in vivo evaluation in translational animal models are of general applicability and answer needs in multiple bioelectronic designs and medical technologies.  相似文献   
5.
A cost driver in the copper-making industry is the periodical relining of the furnaces because of wear. This paper presents thermochemical calculations (using the FactSage database) focused on the evaluation of the slag-refractory chemical interaction in a submerged arc furnace (SAF) used for slag-cleaning operations. This evaluation was made under different conditions: slag-refractory volume ratio, oxygen partial pressure, and different types of slag. The new phases formed as a consequence of the slag-refractory chemical interaction were identified and quantified. To support the theoretical calculations based on thermochemistry, a postmortem study was carried out on a SAF used at the Atlantic Copper Smelter (Spain) after a 6-year campaign (4.5 mill. t. slag processed). Refractory samples were taken from different locations on the wall and analyzed using a scanning electron microscope equipped with an Energy Dispersive Spectroscopy system.  相似文献   
6.
7.
8.
The current paper focuses on synthesizing a high-efficiency microwave absorber via incorporating the nanofillers of graphene oxide-polyaniline (GO-PANI), barium-strontium titanate (BST), and soft-hard ferrite within the polyester matrix. The nanocomposite magnets of (Ba0.5Sr0.5Fe12O19)1-x hard/(CoFe2O4)x soft (x = 0.2, 0.5, and 0.8) were prepared using sol-gel auto-combustion method. The GO-PANI and BST were successfully synthesized by in situ polymerization and improved polymerization, respectively. The phase structure, chemical structure, morphology, and microwave absorption properties of the synthesized nanocomposites were characterized by X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM), vector network analyzer (VNA) techniques, respectively. The results showed that the synergistic effects of the combination of dielectric (BST), conductive (GO-PANI), and magnetic materials (hard-soft ferrites) provided the reflection loss values of less than ?20 dB (>99% absorption) in the X-band region. The minimum reflection loss of ?35 dB (>99.99% absorption) was obtained by the optimal formulation including (Ba0.5Sr0.5Fe12O19)0.2 (CoFe2O4)0.8, and the weight ratio of 1: 2 for both BST/soft-hard ferrite and hard-soft ferrite + BST/GO-PANI with the thickness of 1 mm. According to the results, the thickness factor plays a key role in improving the impedance matching. Consequently, the proposed nanocomposite can be employed as a novel kind of microwave absorbers with good impendence matching and high absorption.  相似文献   
9.
Solution crystallization analysis by laser light scattering (SCALLS) involves the observation of the scattering of diode mercury laser lamp light after it passes through a polymer solution. An increase in turbidity occurs when the hot polymer solution is cooled and the polymer starts to crystallize out of solution. This causes a decrease in the amount of laser light that can pass through the solution and an increase in the amount of scattered light. The reverse of this process leads to the turbidity decreasing with an increase in temperature. According to this concept, it is possible to follow the solution crystallization of various polypropylenes under controlled cooling. In this study, SCALLS was able to differentiate between different isotactic and syndiotactic polypropylenes with similar chemical structures, but different tacticity and molecular weights. Furthermore, SCALLS provided good crystallization information that is similar to that from crystallization analysis fractionation and temperature rising elution fractionation. In addition, SCALLS can be used as a quantitative tool for the measurement of weight fractions during dissolution. © 2014 Society of Chemical Industry  相似文献   
10.
Fabrication of high‐quality ultrathin monocrystalline silicon layers and their transfer to low‐cost substrates are key steps for flexible electronics and photovoltaics. In this work, we demonstrate a low‐temperature and low‐cost process for ultrathin silicon solar cells. By using standard plasma‐enhanced chemical vapor deposition (PECVD), we grow high‐quality epitaxial silicon layers (epi‐PECVD) from SiH4/H2 gas mixtures at 175 °C. Using secondary ion mass spectrometry and transmission electron microscopy, we show that the porosity of the epi‐PECVD/crystalline silicon interface can be tuned by controlling the hydrogen accumulation there. Moreover, we demonstrate that 13–14% porosity is a threshold above which the interface becomes fragile and can easily be cleaved. Taking advantage of the H‐rich interface fragility, we demonstrate the transfer of large areas (∽10 cm2) ultrathin epi‐PECVD layers (0.5–5.5 µm) onto glass substrates by anodic bonding and moderate annealing (275–350 °C). The structural properties of transferred layers are assessed, and the first PECVD epitaxial silicon solar cells transferred on glass are characterized. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号