首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3313篇
  免费   69篇
  国内免费   1篇
电工技术   43篇
综合类   2篇
化学工业   422篇
金属工艺   42篇
机械仪表   45篇
建筑科学   84篇
矿业工程   3篇
能源动力   91篇
轻工业   184篇
水利工程   8篇
石油天然气   2篇
无线电   74篇
一般工业技术   311篇
冶金工业   1752篇
原子能技术   20篇
自动化技术   300篇
  2023年   7篇
  2022年   8篇
  2021年   25篇
  2020年   25篇
  2019年   34篇
  2018年   37篇
  2017年   37篇
  2016年   54篇
  2015年   30篇
  2014年   67篇
  2013年   116篇
  2012年   84篇
  2011年   146篇
  2010年   80篇
  2009年   88篇
  2008年   98篇
  2007年   90篇
  2006年   91篇
  2005年   85篇
  2004年   53篇
  2003年   67篇
  2002年   36篇
  2001年   42篇
  2000年   34篇
  1999年   70篇
  1998年   521篇
  1997年   295篇
  1996年   219篇
  1995年   115篇
  1994年   92篇
  1993年   115篇
  1992年   27篇
  1991年   32篇
  1990年   35篇
  1989年   39篇
  1988年   37篇
  1987年   58篇
  1986年   31篇
  1985年   38篇
  1984年   8篇
  1983年   16篇
  1982年   18篇
  1981年   20篇
  1980年   13篇
  1979年   7篇
  1978年   7篇
  1977年   34篇
  1976年   73篇
  1975年   5篇
  1967年   3篇
排序方式: 共有3383条查询结果,搜索用时 31 毫秒
1.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
2.

In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5–100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10–10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.

  相似文献   
3.
The effects of long-term tamoxifen exposure on cell growth and cell cycle kinetics were compared between oestrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) cell lines. In the MCF-7 cell line, prolonged tamoxifen exposure (0.5 mumol/l for > 100 days) blocked cells in G0-G1 of the cell cycle, and slowed the doubling time of cells from 30 to 59 h. These effects corresponded to an increase in the cellular accumulation of tamoxifen over time [mean area under concentration curve (AUC) = 77.92 mumoles/10(6)/cells/day]. In contrast, in the MDA-MB-231 cell line, long-term tamoxifen exposure had no obvious effect on the doubling time, and reduced cellular tamoxifen accumulation (mean AUC = 50.50 mumoles/10(6)/cells/day) compared to the MCF-7 cells. Flow cytometric analysis of MDA-MB-231 cells demonstrated that a new tetraploid clone emerged following 56 days of tamoxifen exposure. Inoculation of the MDA-MB-231 tetraploid clone and MDA-MB-231 wildtype cells into the opposite flanks of athymic nude mice resulted in the rapid growth of tetraploid tumours. The tetraploid tumours maintained their ploidy following tamoxifen treatment for nine consecutive serial transplantations. Histological examination of the fifth transplant generation xenografts revealed that the tetraploid tumour had a 25-30 times greater mass, area of haemorrhage and necrosis, a slightly higher mitotic index and was more anaplastic than the control neoplasm. The control wildtype MDA-MB-231 tumours maintained a stable ploidy following tamoxifen treatment until the eighth and ninth transplantation, when a tetraploid population appeared, suggesting that tamoxifen treatment may select for this clone in vivo. These studies suggest that prolonged tamoxifen exposure may select for new, stable, fast growing cell clones in vitro as well as in vivo.  相似文献   
4.
BACKGROUND: Measurement of intracardiac hemodynamic parameters has been limited to brief periods in the acute care setting. We developed and evaluated an implantable hemodynamic monitor that is capable of measuring chronic right ventricular oxygen saturation and pulmonary artery pressure. METHODS AND RESULTS: The device consists of an electronic controller placed subcutaneously and two transvenous leads placed in the right ventricle (reflectance oximeter) and pulmonary artery (variable capacitance pressure sensor). Implantation was performed in 10 patients with severe left ventricular dysfunction. Average implant pulmonary artery pressures were systolic, 52 +/- 16 mm Hg; diastolic, 29 +/- 11 mm Hg; and mean, 40 +/- 12 mm Hg. The mean right ventricular oxygen saturation at implant was 51%. Provocative maneuvers, including postural changes, sublingual nitroglycerin, and bicycle exercise, demonstrated expected changes in measured oxygen saturation and pulmonary artery pressures over time. At follow-up of 0.5 to 15.5 months, there were no significant differences between pulmonary artery pressures or oxygen saturation values transmitted from the device and simultaneous measurement with balloon flotation catheters. Four of the pulmonary artery leads dislodged and three demonstrated sensor drift, whereas two of the oxygen saturation sensors failed. Four patients died and four received transplants. Pathological study did not demonstrate injury to the right ventricular outflow tract or pulmonic valve. CONCLUSIONS: Chronic measurement of hemodynamic parameters in the outpatient setting with implantable sensor technology appears to be feasible. The devices are well tolerated without significant untoward effects, and the sensors generally function well over time, providing reliable information. Clinical usefulness remains to be established.  相似文献   
5.
The present paper describes a new method for manufacturing a nanostructured porous layer of TiO2 on a conducting glass substrate for use in a dye-sensitized photoelectrochemical cell. The method involves deposition of a layer of semiconductor particles onto a conducting substrate and compression of the particle layer to form a mechanically stable, electrically conducting, and porous nanostructured film at room temperature. Photoelectrochemical characteristics and morphology of the resulting nanostructured films are presented. The potential use of the new manufacturing method in the future applications of nanostructured systems is discussed.  相似文献   
6.
In order to investigate the effect of cerium oxide on Cu–Zn-based mixed-oxide catalysts four catalyst samples were characterized by means of XRD, in situ XANES and thermogravimetric analysis. The activity of the catalyst samples was tested for the forward water–gas shift reaction. Cerium oxide was found to increase the crystallinity of the ZnO phase indicating a segregation of the Cu and ZnO phases. The TOF of the water–gas shift reaction based on chemisorption data was found to be independent of composition and preparation conditions of the four catalyst samples. In contrast, the catalyst stability depends on composition and preparation conditions. Cerium oxide impregnated before calcination of the hydrotalcite-based Cu–Zn precursors leads to a more stable water–gas shift catalyst.  相似文献   
7.
8.
We have used a variety of methods to characterize the genome of the archaeon Methanosarcina thermophila TM-1. Pulsed-field gel analysis indicates a genome size of 2.8 Mb. We have constructed a bacterial artificial chromosome (BAC) library of M. thermophila and have used it to generate physical maps for this organism. The library is made up of 384 clones with an average insert size of 58 kb representing 8.0 genome equivalents. The utility of the library for low-resolution physical mapping was shown by identifying NotI linking clones and using these to order the NotI macrorestriction fragments of M. thermophila into a 2.8 Mb map. Hybridization of nine single copy genes and a 16S rRNA sequence to these macrorestriction fragments forms the basis for the first genetic map in this organism. High-resolution physical maps, consisting of overlapping clones, have been created using HindIII fingerprints of BAC clones. In this way, we identified a minimal path of five clones that span a 270 kb NotI fragment. The ease of manipulating BAC clones makes the BAC system an excellent choice for the construction of low-resolution and high-resolution physical and genetic maps of archaeal genomes. It also provides a substrate for future genome-sequencing efforts.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号