排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
基于改进BP神经网络的PID控制方法研究 总被引:9,自引:1,他引:8
针对最速下降法收敛速度慢和易陷入局部极小的缺点,提出一种新型的基于改进BP神经网络的PID控制方法,该方法将神经网络和PID控制策略相结合,既具有神经网络自学习、自适应及逼近任意函数的能力。又具有常规PID控制器结构简单的特点。该控制器的算法采用Fletcher—Reeves共轭梯度法,它可以避免网络陷入局部极小点,同时加快网络的训练速度。并用这种改进的共轭梯度法对神经网络PID控制器参数实现在线修正。最后给出了在Matlab平台上的实现算法。仿真结果表明该控制方法是有效的。 相似文献
1