首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   1篇
  完全免费   4篇
  自动化技术   5篇
  2017年   1篇
  2014年   3篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
一种融合项目特征和移动用户信任关系的推荐算法   总被引:2,自引:0,他引:2       下载免费PDF全文
胡勋  孟祥武  张玉洁  史艳翠 《软件学报》2014,25(8):1817-1830
协同过滤推荐系统中普遍存在评分数据稀疏问题.传统的协同过滤推荐系统中的余弦、Pearson 等方法都是基于共同评分项目来计算用户间的相似度;而在稀疏的评分数据中,用户间共同评分的项目所占比重较小,不能准确地找到偏好相似的用户,从而影响协同过滤推荐的准确度.为了改变基于共同评分项目的用户相似度计算,使用推土机距离(earth mover's distance,简称EMD)实现跨项目的移动用户相似度计算,提出了一种融合项目特征和移动用户信任关系的协同过滤推荐算法.实验结果表明:与余弦、Pearson 方法相比,融合项目特征的用户相似度计算方法能够缓解评分数据稀疏对协同过滤算法的影响.所提出的推荐算法能够提高移动推荐的准确度.  相似文献
2.
移动用户需求获取技术及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来,移动用户需求获取技术已成为移动个性化服务研究领域的热点之一.如何利用移动上下文信息进一步提高移动个性化服务的精确性和实时性,成为移动用户需求获取技术的主要任务.对移动用户需求获取技术研究进展进行综述,并对其关键技术、效用评价、应用实践进行前沿概括、比较和分析,最后,对移动用户需求获取技术有待深入的研究难点和发展趋势进行了展望.  相似文献
3.
为了解决传统的基于用户的协同过滤算法中的数据稀疏性问题,提高推荐的准确率,本文对推荐算法进行了改进并将改进后的算法应用在美食推荐领域。首先,利用均值中心化方法对实验数据进行处理,减少因个人评分习惯差异造成的推荐误差。然后,通过使用改进的空值填补法降低评分矩阵的稀疏性。最后,在计算相似度时引入了遗忘函数和用户间的信任度,进一步提高了推荐系统的准确性。实验表明,本文提出的改进算法比传统算法有更高的准确率,并得出了在推荐过程中考虑用户和项目外的其他因素以及针对不同的数据信息采用不同的算法,都有利于提高推荐准确率的重要结论。  相似文献
4.
史艳翠  孟祥武  张玉洁  王立才 《软件学报》2012,23(10):2533-2549
针对移动网络对个性化移动网络服务系统的性能提出了更高的要求,但现有研究难以自适应地修改上下文移动用户偏好以为移动用户提供实时、准确的个性化移动网络服务的问题,提出了一种上下文移动用户偏好自适应学习方法,在保证精确度的基础上缩短了学习的响应时间.首先,通过分析移动用户行为日志来判断移动用户行为是否受上下文影响,并在此基础上判断移动用户行为是否发生变化.然后,根据判断结果对上下文移动用户偏好进行修正.在对发生变化的上下文移动用户偏好进行学习时,将上下文引入到最小二乘支持向量机中,进一步提出了基于上下文最小二乘支持向量机(C-LSSVM)的上下文移动用户偏好学习方法.最后,实验结果表明,当综合考虑精确度和响应时间两方面因素时,所提出的方法优于其他学习方法,并且可应用于个性化移动网络服务系统中.  相似文献
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号