首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   3篇
  自动化技术   3篇
  2012年   1篇
  2007年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
自适应扩散混合变异机制微粒群算法   总被引:10,自引:0,他引:10       下载免费PDF全文
为了避免微粒群算法(particle swarm optimization,简称PSO)在全局优化中陷入局部极值,分析了标准PSO算法早熟收敛的原因,提出了自适应扩散混合变异机制微粒群算法(InformPSO).结合生物群体信息扩散的习性,设计了一个考虑微粒分布和迭代次数的函数,自适应调整微粒的"社会认知"能力,提高种群的多样性;模拟了基因自组织和混沌进化规律,引入克隆选择使群体最佳微粒gBest实现遗传微变、局部增值,具有变异确定性;利用Logistic序列指导gBest随机漂移,进一步增强逃离局部极值能力.基于种群的随机状态转移过程,证明了新算法具有全局收敛性.与其他几种PSO变种相比,复杂基准函数仿真优化结果表明,新算法收敛速度快,求解精度高,稳定性好,能够有效抑制早熟收敛.  相似文献
2.
为了提高组织进化算法(organizational evolutionary algorithm,简称OEA)在高维多模函数全局优化中陷入局部极值,分析了OEA 算法早熟收敛的原因,提出了多点交叉学习组织进化算法(mOEA).设计了一个多个组织的领导交叉学习策略来提高组织领导种群多样性,避免早熟收敛;结合社会群体认知和学习的习性,改进OEA 中的吞并算子,使得同一组织内的个体成员有的在其领导周围爬山运动,有的在搜索范围内随机变异,既提高成员群体的适应度值,又增强成员群体的多样性,不易陷入局部极值.与OEA  相似文献
3.
高维心电图数据存在大量不相关特征,基于监督机器学习技术很难同时获得较高敏感性与特异性。在预处理操作心电图数据,如校准基线漂移、去除高频噪声和拟合多项式特征的基础上,提出一种基于监督多元对应分析(MCA)降维技术的分类模型自动分类心跳。该方法离散化连续心电图数据为类属数据,并发展有监督MCA降维技术提取心电图数据关键特征,用各种分类算法自动分类心电图心跳数据。在PTB诊断数据库的心电图数据集上测试结果表明,与几种基于监督机器学习分类技术相比,在监督MCA降维框架中各种分类算法能以较高敏感性和特异性自动分类心电图心跳数据。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号