首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  国内免费   7篇
  完全免费   34篇
  自动化技术   79篇
  2017年   1篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   8篇
  2010年   15篇
  2009年   3篇
  2008年   13篇
  2007年   2篇
  2006年   4篇
  2005年   10篇
  2004年   4篇
  2003年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
基于FP-Tree的最大频繁项目集挖掘及更新算法   总被引:102,自引:2,他引:100       下载免费PDF全文
宋余庆  朱玉全  孙志挥  陈耿 《软件学报》2003,14(9):1586-1592
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.  相似文献
2.
关联规则挖掘中若干关键技术的研究   总被引:36,自引:0,他引:36  
Apriori类算法已经成为关联规则挖掘中的经典算法,其技术难点及运算量主要集中在以下两个方面:①如何确定候选频繁项目集和计算项目集的支持数;②如何减少候选频繁项目集的个数以及扫描数据库的次数.目前已提出了许多改进方法来解决第2个问题,并已取得了很好的效果.然而,对于第1个问题,仍沿用Apriori算法中的解决方案,其运算量是较大的.为此,提出了一种基于二进制形式的候选频繁项目集生成和相应的计算支持数算法,该算法只需对挖掘对象进行一些“或”、“与”、“异或”等逻辑运算操作,显著降低了算法的实现难度,将该算法与Apriori类算法相结合,可以进一步提高算法的执行效率,实验结果也表明算法是有效、快速的.  相似文献
3.
最大频繁项目集的快速更新   总被引:28,自引:0,他引:28  
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.为克服基于Apriori的最大频繁项目集挖掘算法存在的不足,DMFIA采用FP-tree存储结构及自顶向下的搜索策略,有效地提高了最大频繁项目集的挖掘效率.但对于频繁项目多而最大频繁项目集维数相对较小的情况,DMFIA要经过多层搜索且在每一层产生大量的候选项目集,因而影响算法的执行效率.为此,该文提出了DMFIA的改进算法IDMFIA(the Improved algorithm of DMFIA).IDMFIA采用自顶向下和自底向上双向搜索策略,可尽早修剪掉较短最大频繁项目集的超集和较长最大频繁项目集的子集.另外,该文还提出最大频繁项目集更新算法FUMFIA(Fast Updating Maximum Frequent Itemsets Algorithm),该算法充分利用已建立的FP-tree和已挖掘的最大频繁项目集,可对已挖掘的最大频繁项目集进行高效维护.实验结果表明,IDMFIA和FUMFIA可有效提高最大频繁项目集的挖掘和更新效率.  相似文献
4.
快速更新全局频繁项目集   总被引:15,自引:0,他引:15       下载免费PDF全文
杨明  孙志挥  宋余庆 《软件学报》2004,15(8):1189-1197
数据挖掘中的频繁项目集更新算法研究是重要的研究课题之一.目前已有的频繁项目集更新算法主要针对单机环境,有关分布式环境下的全局频繁项目集的更新算法的研究尚不多见.为此,提出了快速更新全局频繁项目集算法(fast updating algorithm for globally frequent itemsets,简称FUAGFI).该算法主要考虑数据库记录增加时全局频繁项目集的更新情况.FUAGFI利用已建立的各局部频繁模式树(frequent pattern tree,简称FP-tree)及已挖掘的全局频繁项目集,可有效地降低网络通信量,提高全局频繁项目集的更新效率.实验结果表明,所提出的更新算法是行之有效的.  相似文献
5.
关联规则挖掘中增量式更新算法的研究   总被引:9,自引:1,他引:8  
关联规则的更新是数据挖掘技术中的一个重要内容,能否有效地挖掘出动态事务数据库中的频繁项目集或关联规则是衡量一个算法好坏的关键因素。该文系统地介绍了关联规则的增量式更新问题,给出或提出了相应的算法,并举例说明了算法的执行过程。  相似文献
6.
目前已提出了许多快速的关联规则挖掘算法,实际上用户只关心部分关联规则,如他们仅想知道包含指定项目的规则.当这些约束被用于数据预处理或将它结合到数据挖掘算法中去时,可以显著减少算法的执行时间.为此,考虑了一类包含或不包含某些项目的布尔表达式约束条件,提出了一种快速的基于FP—tree的约束最大频繁项目集挖掘算法CMFIMA,并对其更新问题进行了研究,提出了一种增量式更新约束最大频繁项目集挖掘算法CMFIUA.  相似文献
7.
基于近似密度函数的医学图像聚类分析研究   总被引:7,自引:0,他引:7  
针对医学图像数据难以用数学模型来表述和聚类的问题,提出一种基于近似密度函数的医学图像聚类分析方法.该方法采用核密度估计模型来构造近似密度函数,利用爬山策略来提取聚类模式.基于真实的人体腹部医学图像数据集的实验结果表明,该方法可以取得较好的聚类效果.  相似文献
8.
应用主分量分析与粗糙集处理的特征提取   总被引:7,自引:1,他引:6  
近年来,随着软计算理论的不断发展,粗糙集理论已经成为了目前研究的重点领域。论文讨论了主分量分析(PCA)与粗糙集的理论,并应用于图像特征提取中。采用PCA对输入向量进行甄别,应用粗糙集理论约简与分类无关或关系不大的向量。研究结果表明:在主成分分析中结合粗糙集理论可以排除无关向量的影响,并有效地进行特征提取。试验结果表明了结合两者能够提高模式分类的特征提取的效果。  相似文献
9.
一种隶属关系不确定的可能性模糊聚类方法   总被引:5,自引:0,他引:5  
模糊聚类是聚类分析的一个重要分支,模糊C-均值聚类算法及其改进算法都是一种基于概率约束的聚类方法,所采用隶属度的取值形式体现了数据集的绝对隶属程度,常常出现不理想的聚类结果.对此,提出了不确定隶属的概念,在此基础上,通过提出两个基于相对隶属程度的判断准则参数,设计出一种新的基于隶属关系不确定的可能性模糊聚类新算法,并给出了具体算法实现.新算法将迭代过程中数据集对聚类簇隶属的可能性与不确定性关系引入目标函数中,达到明显的优化聚类结果的功效.理论分析和实验结果表明,相对其他聚类算法,新算法具有更高的聚类正确率.  相似文献
10.
基于ECC的病历文档内容抽取签名方案的研究*   总被引:4,自引:2,他引:2       下载免费PDF全文
针对当前电子病历交互信息的机密性、患者的隐私权及签名效率过低等问题,提出基于椭圆曲线密码体制(ECC)的内容抽取签名方案。该方案能从签名过XML病历文档中抽取指定部分,并能认证出抽取部分是由原始签名者签名,从而隐藏患者的隐私信息。实验结果表明,该方案整体实现效率较高,有较好的可操作性及可扩展性。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号