排序方式: 共有94条查询结果,搜索用时 0 毫秒
1.
目的 胰腺的准确分割是胰腺癌识别和分析的重要前提。现有基于深度学习的主流胰腺分割网络大多是编码—解码结构,对特征图采用先降低再增加分辨率的方式,严重丢失了胰腺位置和细节信息,导致分割效果不佳。针对上述问题,提出了基于3D路径聚合高分辨率网络的胰腺分割方法。方法 首先,为了捕获更多3D特征上下文信息,将高分辨率网络中的2D运算拓展为3D运算;其次,提出全分辨特征路径聚合模块,利用连续非线性变换缩小全分辨率输入图像与分割头网络输出特征语义差异的同时,减少茎网络下采样丢失的位置和细节信息对分割结果的影响;最后,提出多尺度特征路径聚合模块,利用渐进自适应特征压缩融合方式,避免低分辨率特征通道过度压缩导致的信息内容损失。结果 在公开胰腺数据集上,提出方法在Dice系数(Dice similarity coefficient,DSC)、Jaccard系数(Jaccard index,JI)、精确率(precision)和召回率(recall)上相比3D高分辨率网络(3D high-resolution net,3DHRNet)分别提升了1.41%、2.09%、2.35%和0.49%,相比具有代表性编码—解码结构的胰腺分割方法,取得了更高的分割精度。结论 本文提出的3D路径聚合高分辨率网络(3D pathaggregation high-resolution network,3DPAHRNet)具有更强的特征位置和细节信息的保留能力,能够显著改善在腹部CT(computed tomography)图像中所占比例较小的胰腺器官的分割结果。开源代码可在https://github.com/qiuchengjian/PAHRNet3D获得。 相似文献
3.
4.
关联规则挖掘中增量式更新算法的研究 总被引:8,自引:1,他引:8
关联规则的更新是数据挖掘技术中的一个重要内容,能否有效地挖掘出动态事务数据库中的频繁项目集或关联规则是衡量一个算法好坏的关键因素。该文系统地介绍了关联规则的增量式更新问题,给出或提出了相应的算法,并举例说明了算法的执行过程。 相似文献
5.
基于网格化的医学图像不规则特征提取方法 总被引:1,自引:0,他引:1
提出了一种针对不容易描述的不规则特征的提取方法:采用贝叶斯启发式学习方法提取图像的聚类变量和等价变量作为特征;用网格划分技术过滤和释放位于稠密超方格的数据项,从而有效减少内存需求、大幅度降低计算复杂度。将此方法应用于医学图像分类器中的特征提取部分,实验结果表明大大地提高了分类的准确率。 相似文献
6.
图像数据库索引技术的研究与探讨 总被引:2,自引:0,他引:2
图像数据库容量的增长,迫切需要研究高效的索引技术来支持快速相似性检索的要求。系统地回顾了数据库索引技术的发展及其研究成果,总结了图像数据库索引技术的发展轨迹和特点。用实验的方法比较了具有代表性的两类索引技术:SAM(Spatial Access Method)和MAM(Metric Access Method),提出了图像数据库索引技术领域存在的问题和未来的发展方向。 相似文献
7.
8.
针对医学图像数据难以用数学模型来表述和聚类的问题,提出一种基于近似密度函数的医学图像聚类分析方法.该方法采用核密度估计模型来构造近似密度函数,利用爬山策略来提取聚类模式.基于真实的人体腹部医学图像数据集的实验结果表明,该方法可以取得较好的聚类效果. 相似文献
9.
10.
基于梯度的混合Mumford-Shah模型医学图像分割 总被引:1,自引:0,他引:1
针对C-V法的水平集图像分割法缺少局部控制能力等问题,将基于边缘的几何主动轮廓线模型和基于区域的C-V法两者结合起来,提出了基于梯度的混合Mumford-Shah图像分割模型HMSG。给出了HMSG模型的参数设置准则,在分割的初期加大模型中全局特征项的权值,在分割的后期则加大局部特征项的权值,以提高模型的图像分割能力。对合成图像与医学图像的分割实验结果表明,该方法优于C-V方法对于含有噪声和边缘模糊的非二值图像的分割,能够较为准确地提取图像边界,可以有效提高图像分割整体性能。 相似文献