首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   2篇
  自动化技术   5篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
基于层次划分的最佳聚类数确定方法   总被引:19,自引:0,他引:19       下载免费PDF全文
确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clusteringfeature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率.  相似文献
2.
基于点分布特征的多元时间序列模式匹配方法   总被引:5,自引:0,他引:5       下载免费PDF全文
多元时间序列模式匹配的常用方法难以刻画序列的全局形状特征,比如,Euclid方法的鲁棒性不够强;而PCA方法不适合处理小规模多元时间序列.基于点的统计分布提出了一种能够有效刻画多元时间序列形状特征的模式匹配方法.首先,提取多元时间序列样本的局部重要点,作为模式描述的方式;然后,根据重要点的统计分布特点构建特征模式向量,并借助Euclid范数来度量两个特征模式向量之间的相似程度,进而进行多元时间序列模式匹配.采用该方法进行模式匹配,充分利用了序列的全局形状特征.实验结果表明,基于点分布特征的多元时间序列模式匹配能够有效地刻画序列的形状特征,且能处理多种规模的序列数据.  相似文献
3.
基于分水岭和重叠率衡量的多级彩色图像分割   总被引:1,自引:0,他引:1  
由于分水岭方法进行图像分割时经常是在梯度图像上进行,并经常产生过分割的结果,因此为克服图像过分割问题和提高分割的准确性,提出了一种基于分水岭和重叠率衡量分层融合策略的彩色图像分割新算法——HWO。该算法首先将RGB颜色空间转化到Lab颜色空间,并根据a、b维来提取统计2维直方图,同时在直方图上运用分水岭分割方法,通过对峰进行填充来得到图像的初步分割结果;然后将与填充对应的分割区域样本与高斯分布结合起来,对图像进行高斯混合模型假设下的参数估计;最后对模型与模型间进行重叠率衡量及分层区域融合,以得到最终的图像分割结果。实验中,首先采用训练图像集对算法涉及的两个参数进行确定,然后对测试图像集的分割效果和分割时间性能进行评估,评估是以标准的人工分割图像库为基准的。实验结果表明,该算法可解决过分割问题,其评估所得分准率及分全率综合衡量系数为0.609,而人工分割综合衡量系数为0.79,同时新方法的分割时间仅为传统方法的1/3,分割速度有了较大提高。  相似文献
4.
在时间序列挖掘工作中,比如聚类和分类,需要计算距离来衡量时间序列样本之间的相似性,有许多研究都致力于时间序列相似性度量的研究.充分利用非线性趋势特征来进行时间序列挖掘.首先计算时间序列的ACF,进而构造ACF的非线性趋势特征,利用该特征作为时间序列相似性度量来进行聚类,它给时间序列平稳性的判定提供了一种新的途径.列举了一个模拟数据和一个实际数据来进行实例验证,实验结果表明,ACF非线性趋势特征作为一种新的相似性度量,相对已有的一些相似性度量而言,ACF非线性趋势特征通常只需计算少量的若干特征值就能更合理地刻画时间序列的平稳性特征.借助K-means进行聚类实验.  相似文献
5.
聚类的有效性问题即如何合理聚类一直是人们关注的焦点.而解决该问题的关键在于如何有效地区分具有重叠现象的类.首先提出了一种新的重叠率衡量方法(RL_OLR),基于该方法,结合图像分割运用,给出了一个新的层次聚类算法:基于重叠率衡量融合策略的层次聚类算法(CM_OLR),该方法可自动确定聚类的最佳聚类数,即图像分割数.为验证算法性能,以标准的人工分割图像库为基准对图像分割结果进行评估,并进行算法参数的统计确定.实验结果表明,算法具有较好的适应能力,可自动确定分割数,评估所得分准率及分全率综合衡量系数为0.611,而人工分割下为0.79.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号