首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
  自动化技术   4篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
本文结合非等距网格高精度紧致差分格式的优越性与多重网格方法的快速收敛性,求解二维对流扩散方程。研究结果表明,对于处理物理量在不同的空间方向呈现不同的性态特征或不同变化规律的物理问题时,用非等距网格离散的四阶紧致格式的多重网格算法和二阶中心差分格式的多重网格算法都比等距网格离散得高效。同时,在非等距网格下,部分半粗化多重网格算法比完全粗化多重网格算法具有更高的计算效率。针对不同的松弛算子对误差残量的磨光效果比较研究表明,线松弛算子是最高效的。而且,非等距网格离散的高精度紧致格式的多重网格算法对于对流扩散问题中大网格雷诺数情形也是收敛的。  相似文献
2.
鉴于目前流行的求解大型稀疏代数方程组的投影迭代法中,为提高迭代效率,在迭代前通常需要对稀疏矩阵进行预处理,改善迭代矩阵的条件数,从而减少迭代次数,这使得发展稀疏矩阵的存储技术变得尤为关键。基于二维对流扩散方程的四阶紧致差分格式,将其转化为代数方程组,得到其三对角块形式的系数矩阵,利用稀疏矩阵存储技术和预条件迭代法进行求解,并与传统的中心差分格式所得数值解进行比较,充分说明了方法的高效性和可靠性。  相似文献
3.
提出了一种数值求解三维非定常涡量—速度形式的不可压Navier-Stokes方程组的有限差分方法,该方法在空间方向上具有二阶精度,并且系数矩阵具有对角占优性,因此适合高雷诺数问题的数值求解.同时,给出了适合的二阶涡量边界条件.通过对有精确解的狄利克雷边值问题和典型的驱动方腔流问题的数值实验,验证了本文格式的精确性、稳定性和有效性.  相似文献
4.
研究了三维对流扩散方程基于有限差分法的多重网格算法。差分格式采用一般网格步长下的二阶中心差分格式和四阶紧致差分格式,建立了与两种格式相适应的部分半粗化的多重网格算法,构造了相应的限制算子和插值算子,并与传统的等距网格下的完全粗化的多重网格算法进行了比较。数值研究结果表明,对于各向异性问题,一般网格步长下的部分半粗化多重网格算法比等距网格下的完全粗化多重网格算法具有个更高的精度和更好的收敛效率。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号