首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   3篇
  自动化技术   6篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2004年   2篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
基于Rough集理论的模糊值属性信息表简化方法   总被引:8,自引:0,他引:8  
为了有效地在信息表中处理取值为模糊术语的属性,解决Rough集对模糊值属性处理能力较弱的问题,提出了模糊不可分辨关系的概念,用于处理属性值为模糊术语的信息表.将约简、核、相对约简与相对核以及规则的约简与核等Rou曲集理论中一系列知识约简的概念推广到模糊环境下,提出了一种有效的模糊值信息表简化的启发式算法.数值实验验证该方法在模糊值属性信息表简化方面比传统的Pawlak方法和其他一些学者的相关工作更为有效.  相似文献
2.
1引言 Rough集[1]是一种处理不完整和不确定信息的数学工具,目前,Rough集已被成功的应用于机器学习、决策分析、过程控制、模式识别与数据挖掘等领域.虽然Rough集理论对于不完备知识的处理是有效的,但是它对原始数据本身的模糊性缺乏相应的处理能力[2].  相似文献
3.
目前有很多粗糙集的推广模型通过引入参数的方法处理含有噪音的实际问题。基于粗糙集推广模型的约简算法可以发现保持信息含量不变的最小属性子集,但是其明显的不足是计算不同参数上的约简时,每次都要从头开始执行。将嵌套结构的理论结果应用于k-近邻模糊粗糙集的快速约简算法设计中,并利用嵌套结构,设计了一个基于已有约简的快速约简算法。该算法的特点是在参数改变时,不必重新运行经典的算法,而是利用已有的约简来计算新的约简。数值实验验证了快速约简算法可以显著地节省运行时间,表明了该算法的可行性和有效性。  相似文献
4.
陈俞  赵素云  李雪峰  陈红  李翠平 《软件学报》2017,28(11):2825-2835
传统的属性约简由于其时间复杂度和空间复杂度过高,几乎无法应用到大规模的数据集中.将随机抽样引入传统的模糊粗糙集中,使得属性约简的效率大幅度提升.首先,在统计下近似的基础上提出一种统计属性约简的定义.这里的约简不是原有意义上的约简,而是保持基于统计下近似定义的统计辨识度不变的属性子集.然后,采用抽样的方法计算统计辨识度的样本估计值,基于此估计值可以对统计属性重要性进行排序,从而可以设计一种快速的适用于大规模数据的序约简算法.由于随机抽样集以及统计近似概念的引入,该算法从时间和空间上均降低了约简的计算复杂度,同时又保持了数据集中信息含量几乎不变.最后,数值实验将基于随机抽样的序约简算法和两种传统的属性约简算法从以下3个方面进行了对比:计算属性约简时间消耗、计算属性约简空间消耗、约简效果.对比实验验证了基于随机抽样的序约简算法在时间与空间上的优势.  相似文献
5.
基于模糊粗糙集的传统约简算法的时间代价较高,在处理大规模数据时耗时过长,且在许多实际大规模数据集上存在有限时间内无法收敛等问题。因此将权重引入属性约简的定义中,其中属性权重是属性重要度的数值指标。通过构建优化问题来求解属性权重,证明了属性依赖度即是属性权重的最优解。因此,提出了基于属性权重排序的约简算法,从而大大提升了约简的速度,使得约简算法可以应用于大规模数据集,特别是高维数据集中。  相似文献
6.
陈俞  赵素云  陈红  李翠平  孙辉 《软件学报》2016,27(7):1645-1654
现有的模糊粗糙集方法,由于其基础理论复杂度的桎梏,无法应用到大规模数据集上.考虑到随机抽样是一种可以极大地减少运算量的统计学方法,本文将随机抽样引入到经典的模糊粗糙集理论中,建立了一种统计粗糙集模型.首先,我们提出了统计上、下近似的概念,它相比经典模糊粗糙集模型的优势在于, 以随机抽样得到的小容量样本代替大规模全集,从而显著降低了计算量.而且,随着全集数量增大,抽样样本数量并不会显著增大.这是本文的主要贡献.此外,我们还讨论了统计上下近似的性质,揭示统计上下近似和经典上下近似之间的关系.并且,我们提出了一个定理,该定理保证了统计下近似与经典下近似的取值统计误差在允许的范围内.最后,通过数值实验验证了统计下近似在计算时间上的显著优势.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号