首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38233篇
  免费   14992篇
  国内免费   13篇
电工技术   687篇
综合类   2篇
化学工业   16415篇
金属工艺   391篇
机械仪表   798篇
建筑科学   1351篇
矿业工程   9篇
能源动力   1028篇
轻工业   7330篇
水利工程   314篇
石油天然气   71篇
无线电   6948篇
一般工业技术   11760篇
冶金工业   922篇
原子能技术   43篇
自动化技术   5169篇
  2023年   61篇
  2022年   51篇
  2021年   375篇
  2020年   1565篇
  2019年   3292篇
  2018年   3252篇
  2017年   3545篇
  2016年   4047篇
  2015年   4060篇
  2014年   4058篇
  2013年   5285篇
  2012年   2984篇
  2011年   2702篇
  2010年   2875篇
  2009年   2780篇
  2008年   2054篇
  2007年   1915篇
  2006年   1616篇
  2005年   1369篇
  2004年   1314篇
  2003年   1264篇
  2002年   906篇
  2001年   607篇
  2000年   283篇
  1999年   102篇
  1998年   141篇
  1997年   116篇
  1996年   83篇
  1995年   75篇
  1994年   55篇
  1993年   45篇
  1992年   32篇
  1991年   43篇
  1990年   23篇
  1989年   26篇
  1988年   21篇
  1987年   19篇
  1986年   26篇
  1985年   24篇
  1984年   23篇
  1983年   19篇
  1982年   17篇
  1981年   15篇
  1980年   17篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   9篇
  1975年   5篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Mytimycins are cysteine-rich antimicrobial peptides that show antifungal properties. These peptides are part of the immune network that constitutes the defense system of the Mediterranean mussel (Mytilus galloprovincialis). The immune system of mussels has been increasingly studied in the last decade due to its great efficiency, since these molluscs, particularly resistant to adverse conditions and pathogens, are present all over the world, being considered as an invasive species. The recent sequencing of the mussel genome has greatly simplified the genetic study of some of its immune genes. In the present work, we describe a total of 106 different mytimycin variants in 16 individual mussel genomes. The 13 highly supported mytimycin clusters (A–M) identified with phylogenetic inference were found to be subject to the presence/absence variation, a widespread phenomenon in mussels. We also identified a block of conserved residues evolving under purifying selection, which may indicate the “functional core” of the mature peptide, and a conserved set of 10 invariable plus 6 accessory cysteines which constitute a plastic disulfide array. Finally, we extended the taxonomic range of distribution of mytimycins among Mytilida, identifying novel sequences in M. coruscus, M. californianus, P. viridis, L. fortunei, M. philippinarum, M. modiolus, and P. purpuratus.  相似文献   
2.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.  相似文献   
3.
We aimed to compare detailed fat distribution and lipid profile between young adults with congenital adrenal hyperplasia due to 21-hydroxylase enzyme deficiency and a control group. We also verified independent associations of treatment duration and daily hydrocortisone dose equivalent (HDE) with lipid profile within patients. This case–control study included 23 patients (7 male and 16 female) matched by an age range of young adults (18–31 years) with 20 control subjects (8 male and 12 female). Dual energy X-ray absorptiometry was used to measure the fat distribution. Male patients demonstrated elevated indices of fat mass for total (7.7 ± 2.1 vs. 4.5 ± 1.3 kg/m2, p = 0.003), trunk (4.0 ± 1.2 vs. 2.2 ± 0.8 kg/m2, p = 0.005), android (0.63 ± 0.24 vs. 0.32 ± 0.15 kg/m2, p = 0.008), gynoid (1.34 ± 0.43 vs. 0.74 ± 0.24 kg/m2, p = 0.005), arm (0.65 ± 0.16 vs. 0.39 ± 0.10 kg/m2, p = 0.009), and leg regions (2.7 ± 0.8 vs. 1.6 ± 0.4 kg/m2, p = 0.005) than the control group, but not in females. However, female patients demonstrated elevated ratio of low-density lipoprotein cholesterol to high-density lipoprotein cholesterol (1.90 ± 0.46 vs. 1.39 ± 0.47, p = 0.009) than the control group, but not in males. Total fat mass was inversely correlated with total testosterone (r = −0.64, p = 0.014) and positively correlated with leptin in males (r = 0.75, p = 0.002). An elevated daily HDE (β = 0.43, p = 0.038 and β = 0.47, p = 0.033) and trunk to total fat mass ratio (β = 0.46, p = 0.025, and β = 0.45, p = 0.037) were independently correlated with impaired lipid profile markers. Although there is no altered lipid profile, male patients demonstrated an increased fat distribution. However, female patients presented with an impaired lipid profile marker but demonstrated close values of normal fat distribution. Interestingly, the dose of glucocorticoid therapy can have some role in the lipid mechanisms.  相似文献   
4.
5.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
6.
7.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
8.
The use of plastic films with specific diffusion or permeation properties for industrial applications has grown at a considerable rate. Some useful applications are found in medical devices, bioreactors, and combustible fuel storage where polymer films function as separation membranes that allow permeation of different gases at different rates. In this work, the permeation and diffusion properties of a polyester‐based thermoplastic polyurethane (TPU) were investigated. TPU injected and extruded specimens were subjected to thermal treatment (annealing) at 100°C for 20 h. Injected samples were exposed to certain hygrothermal conditions and films were prepared to evaluate the influence of annealing on the permeation of gases. In order to achieve a complete analysis, tests such as differential scanning calorimetry, tensile tests, and Fourier transform infrared spectroscopy were conducted to examine the morphological changes. These were then correlated to the TPU permeation behavior after annealing. Water uptake by the polymer—measured as weight gain—likely indicates an increase in the free volume in the amorphous domains. Similarly, in permeation and water immersion tests, the diffusion rate of gases and H2O through the TPU was higher for the annealed samples when compared to those without treatment, indicating that diffusion within the polymer is dependent on the postprocessing thermal treatment. POLYM. ENG. SCI., 59:1810–1817, 2019. © 2019 Society of Plastics Engineers  相似文献   
9.
This is the first investigation to report the processing and properties of ultrahigh molecular weight polyethylene (UHMWPE)/functionalized activated nanocarbon (FANC) gel solutions with the aid of supercritical carbon dioxide (scCO2). The ultradrawing and ultimate tensile properties of scCO2UHMWPE and scCO2UHMWPE/FANC fibers were found to improve considerably compared to those of UHMWPE and UHMWPE/FANC fibers prepared in the conventional way. The maximum achievable draw ratio obtained for the optimal scCO2UHMWPE/FANC fibers drawn at 95°C reached 445. The highest tensile tenacity (σf) of the fully drawn scCO2UHMWPE/FANC fiber reached an extraordinary high value of 104 g/d, which is about 3.2 and 1.1 times of that of the optimal UHMWPE and UHMWPE/FANC fully drawn fibers, respectively. The σf obtained for the optimally fully drawn scCO2UHMWPE/FANC fiber is about 25 times of those of steel fibers and is the highest tensile tenacity ever reported for single‐stage drawn polymeric fibers. Considerably lower dynamic transition temperatures and evaluated thinner crystal lamellae nucleated off of extended chains or FANC nucleants were found for as‐prepared scCO2UHMWPE and scCO2UHMWPE/FANC fibers compared with UHMWPE and UHMWPE/FANC fibers, respectively. Specific surface area, morphological, and Fourier transform infrared analyses of the activated nanocarbon (ANC), acid‐treated activated nanocarbon (ATANC) and FANC nanofillers and investigation of thermal, morphological, and orientation factor properties of the as‐prepared and drawn UHMWPE, UHMWPE/FANC, scCO2UHMWPE, and scCO2UHMWPE/FANC fibers were performed to understand the remarkable ultradrawing, dynamic transition, and ultimate tensile properties obtained for scCO2UHMWPE and scCO2UHMWPE/FANC fibers. POLYM. ENG. SCI., 59:1462–1471 2019. © 2019 Society of Plastics Engineers  相似文献   
10.
The preparation of poly(hexylacrylate)core‐poly(ethyleneglycol methacrylate)shell (PHA‐co‐PEGMA) nanogels, to be used as fillers in nanocomposite hydrogels, is reported. Stable nanogels with particle sizes between 90–300 nm were obtained varying the conditions of synthesis. The synthesis recipe of the nanogels could be easily scaled up. Purified and dispersed nanogels in aqueous solution were used as soft fillers for poly(2‐hydroxyethyl methacrylate) (PHEMA) hydrogels, crosslinked with ethylene glycol dimethacrylate (EGDMA). The obtained nanocomposite hydrogels exhibit a larger swelling capacity and a higher thermal stability in comparison with the non‐filled PHEMA hydrogels. Young, storage, and lost moduli, increase largely, in the better case up to 72.5% in the swollen state; while in the dry state the storage modulus increase up to 4.7 fold with a very low load on nanogels (0.64 wt%); resulting in biomaterials with improved properties with potential applications in medical devices. POLYM. ENG. SCI., 59:170–181, 2019. © 2018 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号