首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   109篇
电工技术   16篇
化学工业   359篇
金属工艺   29篇
机械仪表   32篇
建筑科学   43篇
矿业工程   2篇
能源动力   68篇
轻工业   251篇
水利工程   14篇
石油天然气   9篇
无线电   107篇
一般工业技术   273篇
冶金工业   66篇
原子能技术   22篇
自动化技术   366篇
  2024年   4篇
  2023年   28篇
  2022年   24篇
  2021年   84篇
  2020年   67篇
  2019年   77篇
  2018年   65篇
  2017年   67篇
  2016年   70篇
  2015年   51篇
  2014年   102篇
  2013年   139篇
  2012年   131篇
  2011年   125篇
  2010年   71篇
  2009年   84篇
  2008年   75篇
  2007年   68篇
  2006年   54篇
  2005年   38篇
  2004年   37篇
  2003年   40篇
  2002年   27篇
  2001年   15篇
  2000年   9篇
  1999年   11篇
  1998年   16篇
  1997年   14篇
  1996年   8篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   2篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   4篇
排序方式: 共有1657条查询结果,搜索用时 15 毫秒
1.
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.  相似文献   
2.
Aging is associated with sarcopenia. The loss of strength results in decreased muscle mass and motor function. This process accelerates the progressive muscle deterioration observed in older adults, favoring the presence of debilitating pathologies. In addition, sarcopenia leads to a decrease in quality of life, significantly affecting self-sufficiency. Altogether, these results in an increase in economic resources from the National Health Systems devoted to mitigating this problem in the elderly, particularly in developed countries. Different etiological determinants are involved in the progression of the disease, including: neurological factors, endocrine alterations, as well as nutritional and lifestyle changes related to the adoption of more sedentary habits. Molecular and cellular mechanisms have not been clearly characterized, resulting in the absence of an effective treatment for sarcopenia. Nevertheless, physical activity seems to be the sole strategy to delay sarcopenia and its symptoms. The present review intends to bring together the data explaining how physical activity modulates at a molecular and cellular level all factors that predispose or favor the progression of this deteriorating pathology.  相似文献   
3.
The rumen is a complex microbial system of substantial importance in terms of greenhouse gas emissions and feed efficiency. This study proposes combining metagenomic and host genomic data for selective breeding of the cow hologenome toward reduced methane emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain. After filtering, data were treated as compositional. The large complexity of the rumen microbiota was aggregated, through principal component analysis (PCA), into few principal components (PC) that were used as proxies of the core metagenome. The PCA allowed us to condense the huge and fuzzy taxonomical and functional information from the metagenome into a few PC. Bivariate animal models were applied using these PC and methane production as phenotypes. The variability condensed in these PC is controlled by the cow genome, with heritability estimates for the first PC of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution being >0.20 and with the 95% highest posterior density interval (95%HPD) not containing zero. Most genetic correlation estimates between PC1 and methane were large (≥0.70), with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD not containing zero. Enteric methane production was positively associated with relative abundance of eukaryotes (protozoa and fungi) through the first component of the PCA at phylum, class, order, family, and genus. Nanopore long reads allowed the characterization of the core rumen metagenome using whole-metagenome sequencing, and the purposed aggregated variables could be used in animal breeding programs to reduce methane emissions in future generations.  相似文献   
4.
Stop flow lithography (SFL) combines aspects of microfluidic and photolithography to continuously fabricate particles with uniform planar shapes as dictated by a mask. In this work we aim to expand the palette of materials suitable for SFL processing by investigating the use of UV-crosslinkable preceramic polymers to make ceramic particles. A commercially available methacrylated-polysiloxane was used as the preceramic polymer and was mixed with 2.5 wt% Irgacure 651 photoinitiator. A simple SFL system was assembled to continuously fabricate UV-crosslinked preceramic polymer particles in the shape of hexagons, triangles, and gears with diameters ranging from 100 to 200 μm and thicknesses of 74 μm +/- 4 μm. Particles were harvested from the excess preceramic solution, cleaned and then pyrolyzed at 1000 °C to transform them into silicon oxycarbide ceramic particles. Particle shape was maintained during pyrolysis despite a ~80 % linear shrinkage due to the removal of acryl and methyl side groups, as confirmed via FTIR. After pyrolysis the outer diameters of the SiOC particles ranged from 20 to 40 μm with thicknesses of 10 μm–12 μm. Pyrolyzed particles were successfully recovered and dispersed in water. This work demonstrates a robust path for the fabrication of ceramic particles with specific shapes from preceramic polymers via SFL.  相似文献   
5.
6.

This work shows the preparation of ethylene vinyl acetate copolymer/banana starch/Cloisite 20A organoclay (EVA/starch/C20A) nanocomposites by melt processing. Wide angle X-ray diffraction (WAXD), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry and thermogravimetric analysis were used to characterize the obtained nanocomposites. Mechanical properties were also determined. In addition, the performance of the nanocomposite films under composting was preliminarily studied; it was conducted using the soil burial test method. Despite knowing that the starch is difficult to process by extrusion, nanocomposite films with high homogeneity were obtained. In this case, C20A organoclay acts as an effective surfactant to make the starch natural polymer compatible with the EVA synthetic polymer. The good compatibility between EVA, starch and C20A clay was also deduced by the formation of intercalated and intercalated-exfoliated structures determined by WAXD and FE-SEM. Physical evidence of the damage in EVA/starch/C20A nanocomposite films after the composting test was observed. It is worth noting that despite the absence of starch, the EVA/C20A nanocomposite film, used as a control, also showed surface damage. This behavior is related to the organic modifier linked to clay C20A, which contains molecules derived from fatty acids that can be used as a food source for microorganisms.

  相似文献   
7.
8.
Flexible and hydrophobic biobased films were obtained using zein esterified with methanol and para-toluene (p-toluene) sulfonic acid, cutin from tomato peels and ethanol. Esterification was confirmed by proton nuclear magnetic resonance and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). Non-modified zein films were brittle and hydrophilic. ATR-FTIR demonstrated that zein esterification increased zein hydrophobicity. Without cutin, esterified zein films were hydrophobic but brittle. Addition of cutin yielded films that were flexible and hydrophobic, as demonstrated by contact angle measurements. Principal component analysis (PCA) of ATR-FTIR data showed that intensities at 3195 cm−1 and 3490 cm−1 were correlated to the relative hydrophobicity of zein films. PCA also showed that films of esterified zein and cutin were more hydrophobic than their counterparts (non-modified zein without cutin). Optical and scanning electron microscopy demonstrated that esterified zein was compatible with cutin and yielded cohesive films, which did not fracture upon bending.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号