首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  国内免费   1篇
电工技术   1篇
化学工业   23篇
金属工艺   1篇
轻工业   16篇
石油天然气   1篇
无线电   4篇
一般工业技术   2篇
冶金工业   6篇
自动化技术   2篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: Simultaneous removal of sulfur, nitrogen and carbon compounds from wastewaters is a commercially important biological process. The objective was to evaluate the influence of the CH3COO?/NO3? molar ratio on the sulfide oxidation process using an inverse fluidized bed reactor (IFBR). RESULTS: Three molar ratios of CH3COO?/NO3? (0.85, 0.72 and 0.62) with a constant S2?/NO3? molar ratio of 0.13 were evaluated. At a CH3COO?/NO3? molar ratio of 0.85, the nitrate, acetate and sulfide removal efficiencies were approximately 100%. The N2 yield (g N2 g?1 NO3?‐N consumed) was 0.81. Acetate was mineralized, resulting in a yield of 0.65 g inorganic‐C g?1 CH3COO?‐C consumed. Sulfide was partially oxidized to S0, and 71% of the S2? consumed was recovered as elemental sulfur by a settler installed in the IFBR. At a CH3COO?/NO3? molar ratio of 0.72, the efficiencies of nitrate, acetate and sulfide consumption were of 100%, with N2 and inorganic‐C yields of 0.84 and 0.69, respectively. The sulfide was recovered as sulfate instead of S0, with a yield of 0.92 g SO42?‐S g?1 S2? consumed. CONCLUSIONS: The CH3COO?/NO3? molar ratio was shown to be an important parameter that can be used to control the fate of sulfide oxidation to either S0 or sulfate. In this study, the potential of denitrification for the simultaneous removal of organic matter, sulfide and nitrate from wastewaters was demonstrated, obtaining CO2, S0 and N2 as the major end products. Copyright © 2008 Society of Chemical Industry  相似文献   
2.
The water and oil uptake of mesquite and arabic gums in powdered form was studied at temperatures of 23, 35 and 45°C. A previously proposed equation to predict osmotic equilibrium was tested using the experimental data with both gums and a good statistical fit was obtained. Mesquite gum showed the highest water and oil absorption at all temperatures studied. Temperature dependence of the reciprocal of the S1 and WL were determined using an Arrhenius equation. The activation energy for water and oil absorption for gum arabic was 21.98 and 39.57 kJ mol−1, compared to that of mesquite gum having values of 15.79 and 46.16 kJ mol−1, respectively. A second order kinetic model was obtained for water and oil absorption for both gums.  相似文献   
3.
A novel approach to real-time lane modeling using a single camera is proposed. The proposed method is based on an efficient design and implementation of a particle filter which applies the concepts of the Rao-Blackwellized particle filter (RBPF) by separating the state into linear and non-linear parts. As a result the dimensionality of the problem is reduced, which allows the system to perform in real-time in embedded systems. The method is used to determine the position of the vehicle inside its own lane and the curvature of the road ahead to enhance the performance of advanced driver assistance systems. The effectiveness of the method has been demonstrated implementing a prototype and testing its performance empirically on road sequences with different illumination conditions (day and nightime), pavement types, traffic density, etc. Results show that our proposal is capable of accurately determining if the vehicle is approaching the lane markings (Lane Departure Warning), and the curvature of the road ahead, achieving processing times below 2 ms per frame for laptop CPUs, and 12 ms for embedded CPUs.  相似文献   
4.
5.
6.
Determination of the thermodynamic parameters, allows for a more thorough interpretation of sorption isotherms and provides a better insight into sorption mechanisms. In this work, the adsorption and desorption isotherms of mesquite gum were determined at 25, 35 and 45 degrees C. All isotherms were fitted using the GAB model and the thermodynamic properties were estimated by Othmer's method. The hysteresis decreased when temperature increased. However the effect of temperature was higher on the desorption isotherms, indicating the existence of metastable states. The adsorption process showed smaller enthalpy values during the hysteresis as compared to desorption process. The minimum integral entropy for the adsorption and desorption was located around 14 gH2O/100 g dry solids. This suggests that it is possible to determine the most suitable conditions for storage, using adsorption or desorption isotherms.  相似文献   
7.
The inorganic content and the catalytic performance pose metal-loaded enzyme nanoflowers as promising candidates for developing bioelectrodes capable of functioning without the external addition of a redox mediator. However, these protein-inorganic hybrids have yet to be successfully applied in combination with electrode materials. Herein, the synthesis procedure of these bionanomaterials is reproposed to precisely control the morphology, composition, and performance of this particular protein-mineral hybrid, formed by glucose oxidase and cobalt phosphate. This approach aims to enhance the adherence and electron mobility between the enzyme and a carbon electrode. The strategy relies on dressing the protein in a tailored thin nanogel with multivalent chemical motifs. The functional groups of the polymer facilitate the fast protein sequence-independent biomineralization. Furthermore, the engineered enzymes enable the fabrication of robust cobalt-loaded enzyme inorganic hybrids with exceptional protein loads, exceeding 90% immobilization yields. Notably, these engineered biohybrids can be readily deposited onto flat electrode surfaces without requiring chemical pre-treatment. The resulting bioelectrodes are robust and exhibit electrochemical responses even without the addition of a redox mediator, suggesting that cobalt complexes promote electron wiring between the active site of the enzyme and the electrode.  相似文献   
8.
9.
10.
Herein, the design, synthesis, and characterization of bifunctional hybrid nanoreactors used for concurrent one‐pot chemoenzymatic reactions are shown. In the design, the enzyme, glucose oxidase, is wrapped with a peroxidase‐mimetic catalytic polymer. Hemin, the organic catalyst, is linked to the flexible polymeric scaffold through coordination to the imidazole groups that hang out the network. This spatial arrangement, which works as a metabolic channel, is optimized for cooperative chemoenzymatic reactions in which the enzyme catalyzes first. A deep characterization of the integrated nanoreactors demonstrates that the confinement of two distinct catalytic sites in the nanospace is very effective in one‐pot reactions. Moreover, besides its role as scaffold material, the polymeric mantel protects both the biocatalyst and the chemical catalyst from degradation and inactivation in the presence of organic solvents. Furthermore, the polymeric environment of the nanoreactors can be tailored in order to trigger the assembly of those into highly active heterogeneous hybrid catalysts. Finally, the new nanoreactors are applied to the efficient degradation of organic aromatic compounds using glucose as the only fuel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号