首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   17篇
电工技术   2篇
化学工业   46篇
金属工艺   2篇
建筑科学   8篇
能源动力   9篇
轻工业   23篇
水利工程   4篇
无线电   15篇
一般工业技术   43篇
冶金工业   55篇
自动化技术   36篇
  2023年   7篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   10篇
  2016年   3篇
  2015年   10篇
  2014年   9篇
  2013年   17篇
  2012年   16篇
  2011年   13篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   32篇
  1997年   14篇
  1996年   7篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有243条查询结果,搜索用时 140 毫秒
1.
2.
Since worldwide conversion processes are used to upgrade heavy oil to distillates, the hydrotreatment of light gas oil (LGO) as a downstream process has been used more extensively. This fraction (LGO) is produced from thermal or catalytic cracking or hydrocracking processes. It contains high amounts of unsaturates, nitrogen, and sulfur compounds which cause instability while in storage due to gum formation. The use of LGO as a fuel oil for diesel engines plugs the filter and produces sulfur and nitrogen emissions. These sulfur and nitrogen compounds arise from the cracking of heavy cuts and are aromatic-type molecules which are difficult to hydrogenate. This cut also possesses a low cetane index (CI) which must be increased (by aromatic hydrogenation) because of its poor motor performance. Color and color stability are associated with a high bromine number (BN, unsaturated content), nitrogen, and aromatic content. In order to improve these properties, a deep hydrogenation is sometimes required.  相似文献   
3.
4.
Converting available biomass from municipal, agricultural and forest wastes to bio-methanol can result in significant environmental and economic benefits. Keeping these benefits in mind, one plausible scenario discussed here is the potential to produce energy using bio-methanol in five states of the western United States. In this scenario, the bio-methanol produced is from different biomass sources and used as a substitute for fossil fuels in energy production. In the U.S. West, forest materials are the dominant biomass waste source in Idaho, Montana, Oregon and Washington, while in California, the greatest amount of available biomass is from municipal wastes. Using a 100% rate of substitution, bio-methanol produced from these sources can replace an amount equivalent to most or all of the gasoline consumed by motor vehicles in each state. In contrast, when bio-methanol powered fuel cells are used to produce electricity, it is possible to generate 12–25% of the total electricity consumed annually in these five states.As a gasoline substitute, bio-methanol can optimally reduce vehicle C emissions by 2–29 Tg of C (23–81% of the total emitted by each state). Alternatively, if bio-methanol supported fuel cells are used to generate electricity, from 2 to 32 Tg of C emissions can be avoided. The emissions avoided, in this case, could equate to 25–32% of the total emissions produced by these particular western states when fossil fuels are used to generate electricity. The actual C emissions avoided will be lower than the estimates here because C emissions from the methanol production processes are not included; however, such emissions are expected to be relatively low. In general, there is less carbon emitted when bio-methanol is used to generate electricity with fuel cells than when it is used as a motor vehicle fuel.In the state of Washington, thinning “high-fire-risk” small stems, namely 5.1–22.9 cm diameter trees, from wildfire-prone forests and using them to produce methanol for electricity generation with fuel cells would avoid C emissions of 3.7–7.3 Mg C/ha. Alternatively, when wood-methanol produced from the high-fire-risk wood is used as a gasoline substitute, 3.3–6.6 Mg C/ha of carbon emissions are avoided. If these same “high-fire-risk” woody stems were burned during a wildfire 7.9 Mg C/ha would be emitted in the state of Washington alone. Although detailed economic analyses of producing methanol from biomass are in its infancy, we believe that converting biomass into methanol and substituting it for fossil-fuel-based energy production is a viable option in locations that have high biomass availability.  相似文献   
5.
CsNiCr(CN)6 coordination nanoparticles with sizes ranging from 6 to 30 nm are highly diluted in an organic polymer matrix. Their static and dynamic magnetic behaviour allows unravelling of surface anisotropy and interparticle dipolar interaction effects. The single magnetic domain critical size is thus evaluated to be around 22 nm with a blocking temperature of 21 K (at ν = 1 Hz) and an effective energy barrier for the reversal of the magnetization of 426 K.  相似文献   
6.
The objective was to demonstrate, as an example of an application, the potential of synchrotron X-ray analysis to detect morphological alterations that can occur in barrier packaging materials and structures. These changes can affect the packaging barrier characteristics when conventional food preservation treatments are applied to packaged food. The paper presents the results of a number of experiments where time-resolved combined wide-angle X-ray scattering and small-angle X-ray scattering analysis as a function of temperature and humidity were applied to ethylene-vinyl alcohol co-polymers (EVOH), polypropylene (PP)/EVOH/PP structures, aliphatic polyketone terpolymer (PK) and amorphous polyamide (aPA) materials. A comparison between conventional retorting and high-pressure processing treatments in terms of morphologic alterations are also presented for EVOH. The impact of retorting on the EVOH structure contrasts with the good behaviour of the PK during this treatment and with that of aPA. However, no significant structural changes were observed by wide-angle X-ray scattering in the EVOH structures after high-pressure processing treatment. These structural observations have also been correlated with oxygen permeability measurements that are of importance when guaranteeing the intended levels of safety and quality of packaged food.  相似文献   
7.
Economic ideas and processes are becoming increasingly integrated with more traditional engineering and hydrologic models of water management problems. Combining economic management concepts and performance indicators with an engineering-level of understanding of a hydrologic system can provide results and insights more directly relevant for water management decisions and policies. When such models are developed and used with involvement of stakeholders, they can become a basis for shared understanding of water problems as a foundation for negotiated management and policy solutions. When implemented with optimization software, integrated hydro-economic models also can suggest promising innovative solutions for policy-makers to consider. Their applications to river basin management problems are reviewed. Economic and integrated economic-engineering-hydrologic modeling is then discussed in the context of the evolving European Water Framework Directive. Relevant items are cost recovery and water pricing, cost-effectiveness of water management measures, and public participation in decision processes.  相似文献   
8.
9.
10.
An indirect micro-ELISA system is presented for diagnosing histoplasmosis. The diagnostic criteria are defined by using sera from 12 patients who are histoplasmosis carriers. For this group, the optical density values were superior to 1,000; use was made of 43 sera from blood bank donors and 9 sera from children without a history of exposure. The optical density values in these cases were inferior to 0,200. The significant difference found led to the diagnostic criterion for confirming 3 histoplasmosis carriers who showed clinical manifestations but had been negative to double immunodiffusion. Thus, the usefulness of the proposed micro-ELISA system for early diagnosis was proved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号