首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   34篇
  国内免费   14篇
综合类   2篇
化学工业   45篇
金属工艺   22篇
机械仪表   15篇
建筑科学   10篇
矿业工程   1篇
能源动力   18篇
轻工业   46篇
水利工程   2篇
石油天然气   8篇
无线电   33篇
一般工业技术   110篇
冶金工业   10篇
原子能技术   2篇
自动化技术   67篇
  2024年   2篇
  2023年   14篇
  2022年   18篇
  2021年   53篇
  2020年   22篇
  2019年   20篇
  2018年   35篇
  2017年   30篇
  2016年   27篇
  2015年   14篇
  2014年   15篇
  2013年   21篇
  2012年   13篇
  2011年   23篇
  2010年   12篇
  2009年   11篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1966年   2篇
排序方式: 共有391条查询结果,搜索用时 93 毫秒
1.
Developing only Fe derived bifunctional overall water splitting electrocatalyst both for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) while performing at low onset overpotential and with high catalytic stability is a rare instance. We present here the first demonstration of unique iron-oxide nanobeads (FeOx-NBs) based electrocatalyst executing both OER and HER with high activity. Thin-film electrocatalytic FeOx-NBs assembly is surface grown via simple spray coating (SC). The unique SC/FeOx-NBs propels OER initiating water oxidation just at 1.49 VRHE (η = 260 mV) that is the lowest observable onset potential for OER on simple Fe-oxide based catalytic films reported so far. Catalyst also reveals decently high HER activity and competent overall water splitting performance in the FeOx-NBs two-electrode system as well. Catalyst also presents stable kinetics, with promising high electrochemically active surface area (ECSA) of 1765 cm2, notable Tafel slopes of just 54 mV dec1? (OER) and 85 mV dec1? (HER), high exchange current density of 1.10 mA cm2? (OER), 0.58 mA cm2? (HER) and TOF of 74.29s1?@1.58VRHE, 262s1?@1.62VRHE (OER) and 82.5s1?@-0.45VRHE, 681s1?@-0.56VRHE (HER).  相似文献   
2.
4-Chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) was synthesized by a simple and inexpensive method and tested as a corrosion inhibitor in acid medium for mild steel by using gravimetric studies and electrochemical measurements. An average maximum efficiency of 96.0% was achieved at 4.59 mmol/L. Corrosion kinetic and thermodynamic parameters were also analyzed. Surface analyses (atomic force microscopy and scanning electron microscopy) show that protection is enabled by adsorption on the metal, forming a film. Quantum chemical calculations were performed to access information regarding the molecular structure in the corrosive medium and to support interpretation of the results obtained by experimental methods.  相似文献   
3.
4.
Iranian Polymer Journal - The electrospinning of stereocomplexed poly(lactic acid) (Sc-PLA) twisted yarns was our approach to produce PLA-based nanofibrous structures with improved physical and...  相似文献   
5.
The research on electrode materials for supercapacitor application continues to evolve as the request of high‐energy storage system has increased globally due to the demand for energy consumption. Over the past decades, various types of carbon‐based materials have been employed as electrode materials for high‐performance supercapacitor application. Among them, graphene is 1 of the most widely used carbon‐based materials due to its excellent properties including high surface area and excellent conductivity. To exploit more of its interesting properties, graphene is tailored to produce graphene oxide and reduced graphene oxide to improve the dispersibility in water and easy to be incorporated with other materials to form binary composites or even ternary composites. Nowadays, ternary composites have attracted enormous interest as 2 materials (binary composites) cannot satisfy the requirement of the high‐performance supercapacitor. Thus, many approaches have been employed to fabricate ternary composites by combining 3 different types of electroactive materials for high‐performance supercapacitor application. This review focuses on the supercapacitive performance of graphene‐based ternary composites with different types of active materials, ie, conducting polymers, metal oxide, and other carbon‐based materials.  相似文献   
6.
The development of safe drug carriers is cardinal in cancer therapy, which can target the cancer cells and release the loaded drug on-demand without damaging the healthy cells of the body. In our work, we synthesized three different biodegradable polymers, poly[(ethyl aminobezoate) (ethyl glycinato) phosphazenes] (PABGPs), in different mole ratio of side groups. The successful synthesis of these PABGPs was confirmed by 1H NMR, 31P NMR, FT-IR, and gel permeation chromatography. These PABGPs were fabricated into drug (camptothecin, CPT, a hydrophobic anticancer drug) loaded nanoparticles. These drug-loaded nanoparticles showed good drug release behaviors under normal physiological conditions (pH 7.4 and temperature 37°C). These PABGPs-based nanoparticles may find their application as effective drug carriers for cancer therapy.  相似文献   
7.
8.
The effect of Co addition on the formation of Ni-Ti clusters in maraging stainless steel was studied by three dimensional atom probe (3DAP) and first-principles calculation. The cluster analysis based on the maximum separation approach showed an increase in size but a decrease in density of Ni-Ti clusters with increasing the Co content. The first-principles calculation indicated weaker Co-Ni (Co-Ti) interactions than Co-Ti (Fe-Ti) interactions, which should be the essential reason for the change of distribution characteristics of Ni-Ti clusters in bcc Fe caused by Co addition.  相似文献   
9.
An understanding of the mechanism of aircore phenomenon during draining is very important. In this study, numerical simulations were conducted for different pressurized and suction pressure water tanks, as well as for different drain port diameters, to explain and validate the proposed aircore mechanism. It was found that increasing the pressure at the top surface of the tank results in suppression of the aircore, whereas an increase in the suction pressure at the drain port outlet enhances the development of the aircore. For different drain port diameters, it was observed that the duration of the aircore during draining decreases with a decrease in the drain port diameter, and that the aircore is suppressed for a very small drain port diameter.  相似文献   
10.
Nanoscale electrocatalytic materials having enhanced electroactive sites has been considered trendier and can drive kinetically uphill OER at much lower energy cost with high efficiency. However, very complex synthetic strategies, extensive functionalization processes, and less stability have stimulated quest for economically viable, straightforward and facile preparative methods for designing stable, robust and active nanoscale electrocatalysts engaging geologically abundant materials to ensure their industrial implications. Here we present surface-assembled Fe(OH)x/FeOx type colloidal catalytic thin-films, with or without post annealing, derived from Fe-colloidal NPs in simple carbonate system for efficient water oxidation. Comprehensive electrochemical studies including cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, Tafel slope analysis, mass activity, electrochemically active surface area measurements are conducted to comparatively evaluate the performance of simple (FeOx/HCO3?@FTO and annealed (FeOx/HCO3?@FTO250, FeOx/HCO3?@FTO500) catalysts for oxygen evolution reaction (OER) under employed conditions. The FeOx/HCO3?@FTO250 annealed at 250 °C initiates water oxidation at much lower overpotential of 1.52 V vs. RHE with remarkable stability during long-term electrochemical experimentations. In addition to enhanced OER activity as evidence by better onset potential (<1.55 V vs. RHE), lower Tafel slope value (36 mV dec1?) and negligible charge transfer resistance, the Fe(OH)x/HCO3?@FTO type catalyst presented excellent electroactive nature during long term controlled potential electrolysis experiments where more and more electroactive sites were getting exposed during continuous hours of electrolysis. The catalysts behave as a potential enduring, inexpensive and competent candidate for catalyzing water oxidation reaction when tested under begin conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号