首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   7篇
电工技术   1篇
化学工业   6篇
机械仪表   1篇
轻工业   81篇
无线电   5篇
一般工业技术   8篇
冶金工业   5篇
自动化技术   12篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   8篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   10篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1982年   2篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
Feeding flaxseed to cattle may be a means of increasing omega-3 fatty acid levels in ruminant products, but possible interactions with conserved forages have not been investigated. Twelve Holstein cows were used in a replicated 4 × 4 Latin Square experiment. Cows were fed one of four 50:50 forage:concentrate diets (DM basis): hay (hay control, HC), hay plus 15% ground flaxseed (hay-flaxseed, HF), barley silage (silage control, SC), and barley silage plus 15% ground flaxseed (silage-flaxseed, SF). Plasma concentrations of alpha-linolenic acid (ALA) did not differ between SC and HC diets. Flaxseed increased ALA (P < 0.05), but levels were not influenced by forage type. Flaxseed slightly increased 18:2n-6 (P < 0.05) and some n-6 and n-3 elongation and desaturation products, particularly arachidonic acid (ARA) and eicosapentaenoic acid (EPA). Flaxseed also increased C18:0 (P < 0.05) with this increase being greater (P < 0.01) for cows fed SF than HF. Feeding flaxseed also increased plasma C18:1-trans isomers (P < 0.01), predominantly vaccenic acid (VAA, 18:1-t11), with this increase being greater (P < 0.05) in cows fed HF than SF. Although conjugated linoleic acid (CLA) was increased (P < 0.001) with flaxseed it was not influenced by forage type (P = 0.06). Overall, feeding flaxseed increased plasma ALA, EPA, ARA and CLA independently of forage type. Feeding flaxseed with silage, however, resulted in more 18:0, while feeding flaxseed with hay resulted in greater accumulations of plasma 18:1-trans isomers mainly in the form of VAA.  相似文献   
2.
A continuous leaching method, coupled online with inductively coupled plasma mass spectrometry (ICP-MS) was used on seafood samples to assess the maximum bioaccessibility of several trace elements. The method indeed involves continuous leaching of the food sample by artificial saliva and gastric juice, successively, where this exposition of the food to fresh reagent drives the dissolution equilibrium to the right. Leaching with intestinal juice had to be omitted because it resulted in clogging problems. The experimental apparatus includes a mini-column of powdered sample, which is directly connected to the nebulizer of an ICP-MS instrument. The on-line approach allows a quick assessment of the maximum bioaccessibility of elements of interest by monitoring the real-time release of elements by a given reagent. The method was applied to determine the bioaccessibility of four toxic elements (Al, Cd, Hg, and Pb) and of four essential elements (V, Mn, Cu, and Zn) in certified reference materials and in actual seafood samples. In all cases, mass balance was verified by carrying out the total digestion of the remaining residue from the mini-column and the relationship between total concentration and bioaccessibility was examined.  相似文献   
3.
An experiment was conducted in vitro to determine whether the addition of saponin-containing Yucca schidigera or Quillaja saponaria reduces methane production without impairing ruminal fermentation or fiber digestion. A slightly lower dose of saponin was then fed to lactating dairy cows to evaluate effects on ruminal fermentation, methane production, total-tract nutrient digestibility, and milk production and composition. A 24-h batch culture in vitro incubation was conducted in a completely randomized design with a control (no additive, CON) and 3 doses of either saponin source [15, 30, and 45 g/kg of substrate dry matter (DM)] using buffered ruminal fluid from 3 dairy cows. The in vivo study was conducted as a crossover design with 2 groups of cows, 3 treatments, and three 28-d periods. Six ruminally cannulated cows were used in group 1 and 6 intact cows in group 2 (627 ± 55 kg of body weight and 155 ± 28 d in milk). The treatments were 1) early lactation total mixed ration, no additive (control; CON); 2) CON diet supplemented with whole-plant Y. schidigera powder at 10 g/kg of DM (YS); and 3) CON diet supplemented with whole-plant Q. saponaria powder at 10 g/kg of DM (QS). Methane production was measured in environmental chambers and with the sulfur hexafluoride (SF6) tracer technique. In vitro, increasing levels of both saponin sources decreased methane concentration in the headspace and increased the proportion of propionate in the buffered rumen fluid. Concentration of ammonia-N, acetate proportion, and the acetate:propionate ratio in the buffered rumen fluid as well as 24-h digestible neutral detergent fiber were reduced compared with the CON treatment. Medium and high saponin levels decreased DM digestibility compared with the CON treatment. A lower feeding rate of both saponin sources (10 g/kg of DM) was used in vivo in an attempt to avoid potentially negative effects of higher saponin levels on feed digestibility. Feeding saponin did not affect milk production, total-tract nutrient digestibility, rumen fermentation, or methane production. However, DM intake was greater for cows fed YS and QS than for CON cows, with a tendency for greater DM intake for cows fed YS compared with those fed QS. Consequently, efficiency of milk production (kg of milk/kg of DM intake) was lower for cows fed saponin compared with controls. The results show that although saponin from Y. schidigera and Q. saponaria lowered methane production in vitro, the reduction was largely due to reduced ruminal fermentation and feed digestion. Feeding a lower dose of saponin to lactating dairy cows avoided potentially negative effects on ruminal fermentation and feed digestion, but methane production was not reduced. Lower efficiency of milk production of cows fed saponin, and potential reductions in feed digestion at high supplementation rates may make saponin supplements an unattractive option for lowering methane production in vivo.  相似文献   
4.
Effects of dietary NDF concentration on chewing and productivity were assessed using silage-based diets with and without supplemental long hay. Twelve Holstein cows (125 d postpartum) were used in a double 6 x 6 Latin square to evaluate six diets formulated using high moisture shelled corn and alfalfa silage (37% DM, 23% CP, 48% NDF) to provide three concentrations of NDF: 26, 30, and 34%. At each concentration, an alternative diet was formulated by substituting 15% of the silage DM with an equivalent amount of long alfalfa grass hay (14% CP, 61% NDF). Cows were fed at 85% of ad libitum intake, and ingredients were allocated separately. Increasing NDF decreased milk yield from 20.8 to 19.9 and 19.1 kg/d, for 26, 30, and 34%, respectively. Supplementing diets with hay increased milk production by .7 kg/d, although milk fat content was not affected. Increasing NDF resulted in a quadratic increase in ruminating and total chewing time from 344 and 558 for 26% NDF, to 413 and 651 for 30%, and 414 and 674 min/d for 34%, respectively. Added hay did not increase daily ruminating and chewing time; ruminating time per unit of NDF intake was reduced by hay supplementation (75.3 vs. 69.4 min/kg).  相似文献   
5.
Four multiparous and four primiparous lactating dairy cows fitted with ruminal cannulas were used in a duplicated 4 x 4 Latin square design to study the effects of parity and inclusion of a fibrolytic enzyme product (Agribrands International, St. Louis, MO) on feeding and chewing behavior, salivation, and ruminal pH. Diets consisting of rolled barley, barley silage, and alfalfa haylage (55% forage, DM basis) differed in enzyme application: 1) control, 2) enzyme applied to concentrate (45% of TMR), 3) enzyme applied to supplement (4% of TMR), and enzyme applied to a premix (0.2% of TMR). Enzyme supplementation did not alter daily time spent eating or ruminating, but when enzymes were added to the ration daily, saliva production increased, with no difference among enzyme application treatments. Multiparous cows consumed a greater amount of feed, but spent a similar amount of time eating, compared to primiparous cows. Primiparous cows had shorter ruminating episodes, resulting in lower daily ruminating time compared with multiparous cows. Primiparous cows had lower daily saliva output compared with multiparous cows. These results indicate that application of this fibrolytic enzyme product did not alter the physical structure of the feed, as measured by feeding and chewing variables. The increase in total saliva production observed in cows fed enzyme-supplemented diets may be attributed to a physiological response to compensate for the increase in fermentation products during digestion. The increased intake for multiparous cows is attributed to increased eating rate and not to increased time spent eating. The higher DMI of multiparous cows resulted in increased rumination time needed to process the additional feed and increased salivation to buffer the greater production of VFA.  相似文献   
6.
Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH4) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 1010 cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH4 gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6 h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0  h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH4 production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that different strains of S. cerevisiae fed as active dried yeasts vary in their ability to modify the rumen fermentative pattern in nonlactating dairy cows. Because strain 2 tended (when compared with strain 1) to lower CH4 emissions but increase the risk of acidosis, it may be prudent to further evaluate this strain in cattle fed high-forage diets, for which the risk of acidosis is low but CH4 emissions are high.  相似文献   
7.
Effects of ratio of alfalfa silage to alfalfa hay and forage particle size on nutrient intakes, site of digestion, rumen pools, and passage rate of ruminal contents were evaluated in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The diets consisted of 60% barley-based concentrate and 40% forage made up either of 50:50 or 25:75 of alfalfa silage:alfalfa hay and alfalfa hay was either chopped or ground. Lactating dairy cows surgically fitted with ruminal and duodenal cannulas were used and offered ad libitum access to a total mixed ration. Intakes of nutrients were increased by increasing ratio of silage to hay but were not affected by particle size of forage. Change in ratio of silage to hay of diets did not affect site and extent of digestion. However, increased forage particle size of the diets improved digestibility of fiber and N in the total tract, and as well as digestibility of organic matter, starch, and acid detergent fiber in the intestine. There was a shift of starch digestion from the rumen to the intestine when forage particle size was increased, although total digestion of starch was not changed. Ruminal microbial protein synthesis and microbial efficiency also improved with increasing forage particle size. Cows fed ground hay versus chopped hay had significantly lower rumen wet mass regardless of the ratio of silage to hay. Reduced forage particle size also lowered ruminal nutrient pool size for cows fed the high silage diet. Ruminal passage rates of liquid and solid were decreased by reducing the ratio of silage to hay, and retention time of solids in the total tract was shortened by reducing forage particle size. These results indicate that manipulating ratio of silage to hay in the diets of dairy cows changed feed intake but had little effect on digestion. In contrast, increased forage particle size in dairy cow diets improved fiber digestion and microbial protein synthesis in the rumen, and shifted starch digestion from the rumen to the intestine. Dietary particle size, expressed as physically effective neutral detergent fiber, was a reliable indication of ruminal microbial protein synthesis and nutrient digestion.  相似文献   
8.
Four lactating, cannulated Holstein cows were used in a 4 x 4 Latin square design to investigate the effects of grain source and fibrolytic enzyme supplementation on ruminal fermentation, nutrient digestion in the rumen and in the intestine, and milk production. A 2 x 2 factorial arrangement was used; two grains (barley and hull-less barley) were combined with and without enzyme. The enzyme supplement (Pro-Mote; Biovance Technologies Inc., Omaha, NE) contained primarily cellulase and xylanase activities and was applied daily to the total mixed diet. Dry matter intake was not affected by diet, but starch intake was greatest when hull-less barley was fed. Starch from hull-less barley was more digestible in the rumen and in the total tract than was starch from barley, but opposite results occurred for fiber digestion, indicating that hull-less barley depressed fiber digestion. As a result, cows fed the hull-less barley diets tended to produce more milk with a higher milk lactose content than did cows fed the barley diets. Enzyme supplementation had minimal effects on ruminal digestion but increased nutrient digestibility in the total tract and the proportion of microbial N in nonammonia N. Consequently, cows fed diets supplemented with enzyme had a higher milk protein content and tended to produce more 4% fat-corrected milk than did control cows. These results indicate that the use of hull-less barley rather than barley increased the digestible energy intake of dairy cows, resulting in higher milk production. The use of a fibrolytic enzyme mixture enhanced feed digestibility and milk production.  相似文献   
9.
10.
Agroecosystems rely on inputs of nitrogen (N) to sustain productivity. But added N can leak into adjacent environments, affecting the health of other ecosystems and their inhabitants. Worries about global warming have cast further attention on the N cycle in farmlands because farms are a main source of N2O, and because carbon sequestration, proposed to help reduce CO2 loads, requires a build-up of N. Our objective was to estimate, as an illustrative example, the net N balance of Canadian agroecosystems in 1996 and then infer some hypotheses about the routes of N loss, their magnitude, and ways of reducing them. We defined agroecosystems as all agricultural lands in Canada including soil to 1 m depth and all biota, except humans. Only net flows of N across those boundaries were counted in our balance – all others represent internal cycling. Based on our estimates, about 2.35 Tg N entered Canadian agroecosystems from biological fixation, fertilizers, and atmospheric deposition (excluding re-deposited NH3). In the same year, about 1.03 Tg N were exported in crop products and 0.19 Tg were exported in animals and animal products. Consequently, N inputs exceed exports in products by about 1.13 Tg, a surplus that is either accumulating in agroecosystems or lost to the environment. Because potential soil organic matter gains can account for only a small part of the surplus N, most is probably lost to air or groundwater. Our finding, that N losses amount to almost half of N added, concurs with field experiments that show crop recovery of added N in a given year is often not more than 60%. Better management may reduce the fraction lost somewhat but, because N in ecosystems eventually cycles back to N2, substantive gains in efficiency may not come easily. As well as trying to reduce losses, research might also focus on steering losses directly to N2, away from more harmful intermediates. If some of the `missing N' can be assimilated into organic matter, agricultural soils in Canada may need little added N to achieve C sequestration targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号