首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
无线电   16篇
自动化技术   5篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
For achieving fast accesses the cloud’s big data through mobile smart node, an extreme high data rate for the forwarding link under high-mobility wireless communications is necessary. 3GPP thus specifies LTE/LTE-Advanced specifications as the 4G system to cooperate with the existing UMTS system. To balance loads among different communication interfaces in the hybrid cellular system is one of the most important issues that should be addressed for achieving efficient radio resource allocations. In a shared packet service, the 3GPP UMTS adopts the VSF-OFCDM interface to allocate orthogonal codes of an OVSF code tree in two-dimension spreading of the time and frequency domains. However, UMTS suffers from high packet loss rate and high bandwidth waste rate. In 4G, although the LTE/LTE-Advanced interface offers a high data rate, it suffers from unbalanced loads and moderate reward. This paper thus proposes an adaptive radio interface selection for balancing loads between the UMTS and LTE/LTE-Advanced interfaces according to various interference and mobility environments. Numerical results indicate that the proposed approach outperforms other approaches in fairness, FRL, utilization and call blocking.  相似文献   
2.
Recently, by using vehicle-to-vehicle and vehicle-to-infrastructure communications for VANET/ITS, the cooperative active safety driving (ASD) providing vehicular traffic information sharing among vehicles significantly prevents accidents. Clearly, the performance analysis of ASD becomes difficult because of high vehicle mobility, diverse road topologies, and high wireless interference. An inaccurate analysis of packet connectivity probability significantly affects and degrades the VANET/ITS performance. Especially, most of related studies seldom concern the impact factors of vehicular accidents for the performance analyses of VANET/ITS. Thus, this paper proposes a two-phase approach to model a distributed VANET/ITS network with considering accidents happening on roads and to analyze the connectivity probability. Phase 1 proposes a reliable packet routing and then analyzes an analytical model of packet connectivity. Moreover, the analysis is extended to the cases with and without exhibiting transportation accidents. In phase 2, by applying the analysis results of phase 1 to phase 2, an adaptive vehicle routing, namely adaptive vehicle routing (AVR), is proposed for accomplishing dynamic vehicular navigation, in which the cost of a road link is defined in terms of several critical factors: traffic density, vehicle velocity, road class, etc. Finally, the path with the least path cost is selected as the optimal vehicle routing path. Numerical results demonstrate that the analytical packet connectivity probability and packet delay are close to that of simulations. The yielded supreme features justify the analytical model. In evaluations, the proposed approach outperforms the compared approaches in packet connectivity probability, average travel time, average exhausted gasoline. However, the proposed approach may lead to a longer travel distance because it enables the navigated vehicle to avoid traversing via the roads with a higher traffic density.  相似文献   
3.
Cloud computing provides various diverse services for users accessing big data through high data rate cellular networks, e.g., LTE-A, IEEE 802.11ac, etc. Although LTE-A supports very high data rate, multi-hop relaying, and cooperative transmission, LTE-A suffers from high interference, path loss, high mobility, etc. Additionally, the accesses of cloud computing services need the transport layer protocols (e.g., TCP, UDP, and streaming) for achieving end-to-end transmissions. Clearly, the transmission QoS is significantly degraded when the big data transmissions are done through the TCP protocol over a high interference LTE-A environment. The issue of providing high data rate and high reliability transmissions in cloud computing needs to be addressed completely. Thus, this paper proposes a cross-layer-based adaptive TCP algorithm to gather the LTE-A network states (e.g., AMC, CQI, relay link state, available bandwidth, etc.), and then feeds the state information back to the TCP sender for accurately executing the network congestion control of TCP. As a result, by using the accurate TCP congestion window (cwnd) under a high interference LTE-A, the number of timeouts and packet losses are significantly decreased. Numerical results demonstrate that the proposed approach outperforms the compared approaches in goodput and fairness, especially in high interference environment. Especially, the goodput of the proposed approach is 139.42 % higher than that of NewReno when the wireless loss increases up to 4 %. Furthermore, the throughput and the response functions are mathematically analyzed. The analysis results can justify the claims of the proposed approach.  相似文献   
4.
3G Wideband CDMA systems adopt the Orthogonal Variable Spreading Factor code tree as the channelization codes management for achieving high data rate transmission in personal multimedia communications. It assigns a single channelization code for each accepted connection. Nevertheless, it wastes the system capacity when the required rate is not powers of two of the basic rate. One good solution is to assign multiple codes for each accepted connection but it causes two inevitable drawbacks: long handoff delay and new call setup delay due to high complexity of processing with multiple channelization codes, and high cost of using more number of rake combiners. Especially, long handoff delay may result in more call dropping probability and higher Grade of Service, which will degrade significantly the utilization and revenue of the 3G cellular systems. Therefore, we propose herein an adaptive efficient codes determination algorithm based on the Markov Decision Process analysis approach to reduce the waste rate and reassignments significantly while providing fast handoff. Numerical results demonstrate that the proposed approach yields several advantages, including the lowest GOS, the least waste rate, and the least number of reassignments. Meanwhile, the optimal number of rake combiners is also analyzed in this paper. This research was supported in part by the National Science Council of Taiwan, ROC, under contract NSC-93-2213-E-324-018.  相似文献   
5.
The 3GPP Long Term Evolution (LTE) Advanced and IEEE 802.16j specifications adopt the mobile multi-hop relaying (MMR) mechanism for enlarging service area and improving wireless transmission quality simultaneously. By deploying different types of Relay Stations (RSs), MMR can bring some advantages: (1) the signal fading and wireless interference of a single long wireless link is improved obviously; (2) the ranges of wireless access and relay area are extended, etc. MMR can offer a high data rate transmission for packet services and can increase system capacity. Note that MMR can be applied to the public transportation system, e.g., equipped a mobile RS on a high-speed train. A mobile RS handoff initializes a multiple handoff requests of different types of traffics. It becomes as a critical handoff issue in 4G MMR. Thus, the MMR handoff needs a new efficient Connection Admission Control (CAC) to guarantee qualities for various types of traffics and to increase system revenue. However, traditional CACs are difficult to fulfill the objectives. This paper thus proposes the Dynamic Cost-Reward-based (DCR) CAC that consists of two key mechanisms: (1) adopting a Markov decision process-based (MDP) cost function and (2) providing different reward functions for different types of nodes and various types of connection. Additionally, a mathematical analytical Markov chain is modeled for DCR. The simulation results are very close to the analysis results, which justifies the correctness of the analytical model. Numerical results demonstrate that DCA outperforms the compared CACs in the probabilities of new blocking, MS-handoff, and RS-handoff dropping, FRL, GoS, and system reward.  相似文献   
6.
In Media Independent Handover (MIH), Call Admission Control (CAC) and Vertical Handoff (VH) are two important mechanisms in a Mobile Wireless Networks (MWNs) that consists of various types of wireless networks (e.g., WiMAX and WiFi) and cellular communications (e.g., 3G, 3.5G and 4G). First, an adaptive CAC is needed in base stations for achieving high network reward while guaranteeing QoS requirements. Second, an efficient vertical handoff enables mobile stations accomplishing seamless, fast, QoS-aware mobility in MWNs. In CAC, several studies have proposed the mechanisms: the static resource reservation-based, bandwidth borrow-based and Markov chain model-based approaches. They suffer from moderate performance in Grade of Service (GoS), Fractional Reward Loss (FRL) and transmission quality. In VH, it should consider both the received signal strength (RSS) and the service-class mapping between the serving and target networks. Most studies adopted the integration of a RSS-based method with hysteresis to minimize unnecessary handoffs, but high handoff dropping and low network utilization limit the contributions. This work thus proposes a MIH-based competitive on-line (COL) CAC for vertical handoff in a loosely-coupled MWN. First, in a base station (BS) the COL CAC models the resource occupancy of each wireless network in a MWN as a Markov chain model, and then forms a cost-reward CAC for maximizing network reward. Second, in MS the VH scheme adopts a predictive RSS to predict the moving trend of each mobile station to select the optimal target network. Numerical results indicate that the proposed approach outperforms other approaches in GoS, FRL and the number of vertical handoffs while yielding competitive utilization.  相似文献   
7.
Based on the IEEE 802.16e standard, WiMAX has proposed a relay-based mechanism, namely IEEE 802.16j, to extend the service area of the Multihop Relay Base Stations (MR-BSs) and to improve the Received Signal Strength quality. IEEE 802.16j thus can achieve two significant advantages: extending the WiMAX service area with a low-cost solution and compatible with the existing WiMAX specifications. The Relay Station (RS) can be classified into three types: Fixed RS, Nomadic RS and Mobile RS according to diverse features of mobility and relaying range. A multihop-relay WiMAX network including various types of RSs exhibits a critical routing issue, i.e., how to determine an efficient relay-based routing path between a Mobile Station (MS) and a MR-BS. This paper thus proposes an IEEE 802.16j-conformed relay-based adaptive competitive on-line routing approach that focuses on the Non-Transparent Relay-Station (NT-RS) mode, where the path with the least cost and the highest AMC coding rate will be selected in terms of the link bandwidth, path length and channel conditions. Numerical results indicate that the proposed routing approach significantly outperforms other approaches in Fractional Reward Loss, network utilization and average end-to-end path delay.  相似文献   
8.
The Multicast Ad hoc On-Demand Distance Vector (MAODV) routing protocol is proposed for achieving multicast in a Mobile Ad hoc Network (MANET) while reducing bandwidth waste and energy power consumption. In MANET, packets transmission through a multicast tree may always have unreliable links caused by node mobility or lack of energy, and thus significantly degrades the performance. MAODV uses a broadcast-type local repair mechanism to find an alternative route to the multicast tree when some breaks happen on the tree. Although the local repair mechanism provides a specified time-to-live (TTL) to limit the repair range and the hop-count to the group leader, a large number of broadcast-type Route Request (RREQ) messages extensively yields control overhead and requires a large amount of power consumption to send control messages. Thus, this paper proposes a unicast-type multihop local repair protocol for multicast MANETs to recover lost links efficiently while achieving several advantages: increasing network reliability, increasing packet delivery rate, minimizing the number of control messages and reducing repair delay. Moreover, the optimal number of hops used in the multihop neighbor table is analyzed mathematically. Numerical results indicate that the proposed approach outperforms other repair approaches in terms of successful repair rate, control message overhead and packet delivery rate.  相似文献   
9.
For the reason of the orthogonal characteristic of the Orthogonal Variable Spreading Factor (OVSF) code tree in Wideband CDMA (WCDMA) systems, code blocking increases as traffic load (i.e. Erlang load) or the required rate increases. This causes inefficient utilization of channelization codes. Hence, how to efficiently manage the resource of channelization codes of the OVSF code tree in WCDMA systems is an important issue and has been studied extensively. There are two aspects to achieve efficiency including code assignment and code reassignment. In the aspect of code assignment, an efficient code assignment scheme reduces code blocking probability significantly. In the aspect of code reassignment, code reassignment results in several drawbacks, such as large overhead of computation, high complexity of codes moving, and long call setup time for a new request call, etc. Therefore, in this paper we focus on the first aspect of how to efficiently assign the channelization codes. Additionally, most researches did not consider the analysis of tree state with dynamic traffic load and their analysis lack of systematic call admission control (CAC) mechanism. Therefore, in this paper, we first propose the Markov decision process (MDP) based analysis to assign channelization codes efficiently. Next, we extend the MDP-based approach as the call admission control mechanism to maximize the system revenue while reducing blocking probability. Furthermore, a bit string masking algorithm is proposed to reduce the time complexity of tree managing and searching for available channelization codes. Numerical results indicate that the proposed MDP approach yields the best fractional reward loss, code blocking reward loss, and code blocking ratio as compared to that of other schemes, including the random, left most, and crowded first schemes. Ben-Jye Chang received his M.S. degree in computer engineering from University of Massachusetts, Lowell, in 1991 and the Ph.D. degree in computer science and information engineering from National Chung-Cheng University, Taiwan, in 2001. He joined the Department of Computer Science and Information Engineering faculty at Chaoyang University of Technology, Taiwan, in 2002, where he is currently an associate professor. His research interests include QoS-based networks, QoS wireless networking, resource management for wireless networks and mobile cellular networks, and performance evaluation of networks. Min-Xiou Chen received the B.S. and M.S. degrees in computer science and information engineering from Tung Hai University and National Chung Cheng University in 1996, and 1998, respectively. He is currently a Ph.D. candidate in the Department of Computer Science and Information Engineering, National Chung Cheng University. His research interests include wireless communication, SIP, and resource management in WCDMA systems. Ren-Hung Hwang received his M.S. and Ph.D. degrees in computer science from University of Massachusetts, Amherst, Massachusetts, USA, in 1989 and 1993, respectively. He joined the Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan, in 1993, where he is now a full professor and the Chair of the Department of Communication Engineering. His research interests include Internet QoS, peer-to-peer infrastructure design, and 3G QoS. Chun-Huan Chuang received the B.S. and M.S. degrees in computer science and information engineering from National Chung Cheng University, Taiwan, in 2001 and 2003, respectively. His research interests include wireless communication and resource management in WCDMA systems.  相似文献   
10.
Wireless Personal Communications - The cooperative adaptive cruise control (CACC) aims to achieve active safe driving that avoids vehicle accidents or a traffic jam by exchanging the road traffic...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号