首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   33篇
  国内免费   3篇
电工技术   7篇
综合类   3篇
化学工业   107篇
金属工艺   7篇
机械仪表   25篇
建筑科学   46篇
矿业工程   4篇
能源动力   113篇
轻工业   39篇
水利工程   7篇
无线电   106篇
一般工业技术   142篇
冶金工业   30篇
原子能技术   2篇
自动化技术   158篇
  2024年   1篇
  2023年   9篇
  2022年   11篇
  2021年   22篇
  2020年   16篇
  2019年   14篇
  2018年   27篇
  2017年   34篇
  2016年   36篇
  2015年   29篇
  2014年   34篇
  2013年   102篇
  2012年   57篇
  2011年   64篇
  2010年   47篇
  2009年   71篇
  2008年   57篇
  2007年   48篇
  2006年   28篇
  2005年   15篇
  2004年   19篇
  2003年   13篇
  2002年   11篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1988年   1篇
  1977年   1篇
排序方式: 共有796条查询结果,搜索用时 15 毫秒
1.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   
2.
The present work delineates the hydrodynamics and thermal characteristics due to mixed convection in the liddriven semi-circular cavity affected by the presence of the adiabatic block at its geometric center for twodimensional, steady-state, laminar and for non-Newtonian power-law fluids. The semi-circular cavity has a diameter of D. The horizontal wall/lid is sliding with a uniform horizontal velocity(u = U) and is subjugated to the ambient thermal condition; while the curved surface is subjugated to a higher isothermal temperature.The convective characteristics inside the system is explored for the broad range of Richardson number(0.1 ≤Ri ≤ 10), Prandtl number(1 ≤ Pr ≤ 100) and non-Newtonian power-law index(0.5 ≤ n ≤ 1.5) at a constant Grashof number of 10~4. Apart from this, the effect of shape(cross-section) of the inserted block, i.e., circular, square and triangular on heat transfer characteristics has also been explored. It is observed that the shear thickening fluids display better cooling characteristics. Besides, the cavity with immersed triangular block shows better heat transfer results than the circular and square blocks. The deviations observed in the flow and heat transfer characteristics in the cavity by inserting an adiabatic block as compared with cavity without block have been ascertained by calculating normalized Nusselt number(Nu~N). The presence of the block was found to have a diminishing effect on the heat transfer due to convection in the cavity. In the end, the results of the study are summarized in the form of a predictive correlation exhibiting the functional dependence of average Nusselt number with Prandtl number, power-law index, and Richardson number.  相似文献   
3.
Fabrication of terahertz modulators as simple devices with high modulation depth across a broad bandwidth is still very challenging. In this study, four different chemical vapor deposition grown multilayer graphene (MLG) modulators based on MLG/ionic liquid/gold sandwich structures have been investigated. Flexible substrates (PVC and PE) were chosen as host materials, and devices were fabricated with three different thicknesses. The resultant MLG devices can be operated at low voltages between 0 and 3.4 V providing nearly complete modulation between 0.2 and 1.5 THz with low insertion losses. Even with such low gate voltages, the devices have been doped significantly inducing 7–11-fold improvement in their sheet conductivities depending on device thickness. In addition, sheet conductivity has been improved more than three times as the graphene layer number increased from 30 to 100. With the demonstration of promising device performances, the proposed modulators can be potential candidates for applications in terahertz and related optoelectronic technologies.  相似文献   
4.
This study outlines a new sensing platform based on glassy carbon electrodes modified by gold nanoparticles (AuNPs) for the determination of heavy metal. A glassy carbon electrode was modified by chitosan stabilized AuNPs. AuNPs were prepared by reducing gold salt with a polysaccharide chitosan. Here, chitosan acted as a reducing/stabilizing agent. The AuNPs were characterized with UV–Visible absorption spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Chitosan covered AuNPs were immobilized on the glassy carbon electrode for the determination of Cu (II) in aqueous solutions. The electrochemical determination of Cu (II) ions was performed using the differential pulse voltammetry technique. Some parameters for Cu (II) determination, such as pH, preconcentration time and electrolysis potential of Cu (II), were optimized. The detection limit was calculated as 5 × 10?9 mol L?1 by means of the 3:1 current-to-noise ratio. The interference of Cr(III), Fe(II), Ni(II), Pb(II), Mg(II), Zn(II), Ba(II) ions was investigated and showed a negligible effect on the electrode response. Recovery studies were carried out using tap water.  相似文献   
5.
A novel framework for termset based feature extraction is proposed for binary text classification. The proposed approach is based on the encoding of the terms within a termset. The ternary codes ‘+1’ and ‘?1’ are used to represent the class that the term supports, whereas ‘0’ denotes no support to any of the classes. Four different encoding schemes are proposed where the term weights and the term occurrence probabilities in the positive and negative documents are used to define the ternary code of a given term. The ternary patterns are utilized to define novel features by splitting them into positive and negative codes where each code is treated as a different feature extractor. Use of the derived features individually and together with bag of words representation are both investigated. The histograms of the resultant features are also employed to study the improvements that can be achieved using a small number of additional features to augment bag of words representation. Experiments conducted on four benchmark datasets with different characteristics have shown that the proposed feature extraction framework provides significant improvements compared to the bag of words representation.  相似文献   
6.
I. U. Cagdas 《工程优选》2013,45(4):453-469
The optimum designs are given for clamped-clamped columns under concentrated and distributed axial loads. The design objective is the maximization of the buckling load subject to volume and maximum stress constraints. The results for a minimum area constraint are also obtained for comparison. In the case of a stress constraint, the minimum thickness of an optimal column is not known a priori, since it depends on the maximum buckling load, which in turn depends on the minimum thickness necessitating an iterative solution. An iterative solution method is developed based on finite elements, and the results are obtained for n=1, 2, 3 defined as I n A n , with I being the moment of inertia, and A the cross-sectional area. The iterations start using the unimodal optimality condition and continue with the bimodal optimality condition if the second buckling load becomes less than or equal to the first one. Numerical results show that the optimal columns become larger in the direction of the distributed load due to the increase in the stress in this direction. Even though the optimal columns are symmetrical with respect to their mid-points when the compressive load is concentrated at the end-points, in the case of the columns subject to distributed axial loads the optimal shapes are unsymmetrical.  相似文献   
7.
8.
9.
Ozone, which is also referred to as triatomic oxygen or trioxygen, is a naturally occurring inorganic molecule that consists of three oxygen atoms. Ozone has proven microbiological properties and, for this reason, it is extensively used in modern medical practices. Ozone is a powerful oxidant that demonstrates bactericide, virucide, and fungicide effects. The strong oxidation effect it produces results in the formation of highly reactive free radicals that have the capability to destroy microorganisms. Ozone has been proposed as a means of preventing caries, and existing research confirms that this form of therapy does have promising potential. However, very few clinical studies have examined the impact that ozone treatment can have on the management of caries lesions. This article presents a detailed literature review of existing peer-reviewed sources that have examined the role ozone plays in preventing and treating caries.  相似文献   
10.
Cellular fusion is a key process in many fields ranging from historical gene mapping studies and monoclonal antibody production, through to cell reprogramming. Traditional methodologies for cell fusion rely on the random pairing of different cell types and generally result in low and variable fusion efficiencies. These approaches become particularly limiting where substantial numbers of bespoke one‐to‐one fusions are required, for example, for in‐depth studies of nuclear reprogramming mechanisms. In recent years, microfluidic technologies have proven valuable in creating platforms where the manipulation of single cells is highly efficient, rapid and controllable. These technologies also allow the integration of different experimental steps and characterisation processes into a single platform. Although the application of microfluidic methodologies to cell fusion studies is promising, current technologies that rely on static trapping are limited both in terms of the overall number of fused cells produced and their experimental accessibility. Here we review some of the most exciting breakthroughs in core microfluidic technologies that will allow the creation of integrated platforms for controlled cell fusion at high throughput. © 2015 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号