首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16179篇
  免费   989篇
  国内免费   26篇
电工技术   191篇
综合类   40篇
化学工业   3118篇
金属工艺   330篇
机械仪表   333篇
建筑科学   693篇
矿业工程   45篇
能源动力   531篇
轻工业   1268篇
水利工程   125篇
石油天然气   47篇
无线电   1213篇
一般工业技术   3157篇
冶金工业   2772篇
原子能技术   132篇
自动化技术   3199篇
  2023年   148篇
  2022年   132篇
  2021年   500篇
  2020年   382篇
  2019年   397篇
  2018年   509篇
  2017年   484篇
  2016年   555篇
  2015年   476篇
  2014年   623篇
  2013年   1096篇
  2012年   993篇
  2011年   1209篇
  2010年   841篇
  2009年   774篇
  2008年   816篇
  2007年   817篇
  2006年   605篇
  2005年   536篇
  2004年   389篇
  2003年   399篇
  2002年   352篇
  2001年   226篇
  2000年   181篇
  1999年   198篇
  1998年   350篇
  1997年   256篇
  1996年   226篇
  1995年   209篇
  1994年   190篇
  1993年   174篇
  1992年   128篇
  1991年   86篇
  1990年   134篇
  1989年   140篇
  1988年   97篇
  1987年   117篇
  1986年   118篇
  1985年   117篇
  1984年   98篇
  1983年   91篇
  1982年   105篇
  1981年   112篇
  1980年   84篇
  1979年   78篇
  1978年   81篇
  1977年   93篇
  1976年   98篇
  1975年   57篇
  1974年   54篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Forschung im Ingenieurwesen - Zur Übertragung von Drehmoment und Drehzahl in beliebiger Achsanordnung eignen sich bei kleinem Achswinkel bis 30° Beveloidverzahnungen. Besonders...  相似文献   
2.
Journal of Materials Science - The application of ceramics in advanced functional applications often requires thicknesses below a few hundred micrometers, rendering an assessment of the...  相似文献   
3.
Zirconolite-rich full ceramic wasteforms designed to immobilize Pu-bearing wastes were produced via hot isostatic pressing (HIP) using stainless steel (SS) and nickel (Ni) HIP canisters. A detailed profiling of the elemental compositions of the major and minor phases over the canister–wasteform interaction zone was performed using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS) characterization. Bulk sample analyses from regions near the center of the HIP canister were also conducted for both samples using X-ray diffraction and SEM-EDS. The sample with the Ni HIP canister showed almost no interaction zone with only minor diffusion of Ni from the inner wall of the canister into the near-surface region of the wasteform. The sample with the SS HIP canister showed ∼100–120 μm of interaction zone dominated by high-temperature Cr diffusion from canister materials to the wasteform with the Cr predominantly incorporated into the durable zirconolite phase. We also examined, for the first time, changes to the HIP canister wall thickness caused by HIPing and demonstrated that no canister wall thinning occurred. Instead, in the areas examined, the canister wall thickness was observed to increase (up to ∼20%) due to the compression occurring during the HIP cycle. Further, only sparse formation of (Cr, Mn)-rich oxide particles were noted within the HIP canister inner wall area immediately adjacent to the ceramic material, with no evidence for reverse diffusion of ceramic materials. Though the HIP canister–wasteform interaction extends to ∼120 μm when using an SS HIP canister for the system investigated, this translates to <<1 vol.% for an industrial scale HIPed wasteform. Importantly, the HIP canister–wasteform interactions did not produce any obviously less durable phases in the wasteform or had any detrimental impact on the HIP canister properties.  相似文献   
4.
5.
The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2000 h with initial luminance values above 450 cd m−2, a peak efficiency of 12.6 lm W−1, and sub-minute turn-on times. The stability of the devices is also studied by measuring the photoluminescence (PL) of the semiconductor during electroluminescent operation. The findings suggest that it is possible to observe the quenching of the PL in vertically stacked devices due to the advancement of the doped fronts in the film and an immediate PL recovery when the bias is removed.  相似文献   
6.
The NASICON type solid electrolyte LATP is a promising candidate for all-solid-state Li-ion batteries considering energy density and safety aspects. To ensure the performance and reliability of batteries, crack initiation and propagation within the electrolyte need to be suppressed, which requires knowledge of the fracture characteristics. In the current work, micro-pillar splitting was applied to determine the fracture toughness of LATP material for different grain orientations. The results are compared with data obtained using a conventional Vickers indentation fracture (VIF) approach. The fracture toughness obtained via micro-pillar splitting test is 0.89 ± 0.13 MPa?m1/2, which is comparable to the VIF result, and grain orientation has no significant effect on the intrinsic fracture toughness. Being a brittle ceramic material, the effect of pre-existing defects on the toughness needs to be considered.  相似文献   
7.
The repair of bone fractures is a clinical challenge for patients with impaired healing, such as osteoporosis. Currently, different strategies have been developed to design new biomaterials, enhancing their interactions with biological systems and conducting the cellular behavior in the desired direction to help fracture healing. In the present work, hydroxyapatite-graphene oxide (HA-GO) nanocomposites were produced and the morphological and physicochemical influences of the addition of 0.5 wt%, 1.0 wt% and 1.5 wt% of GO to HA were observed. FEG-SEM and TEM analyses of HA-GO nanocomposites showed HA nanoparticles adhered to the surface of the GO sheets, suggesting an effective method to form nanostructured graphene-based biomaterials. As confirmation, physicochemical analyses by Raman, FTIR and TGA demonstrated a strong affinity between HA and GO, according to the increase of concentration from 0.5 wt% to 1.5 wt% GO in the HA-GO nanocomposites. Also, in order to evaluate the HA-GO nanocomposites behavior under biological microenvironment, in vitro bioactivity and indirect cytotoxicity tests were performed. FEG-SEM analyses confirmed the positive results for the bioactivity properties of HA-GO nanocomposite and indirect cytotoxicity demonstrated that even with a decrease in the hDPSCs viability and proliferation, when increasing to 1.5 wt% of GO concentration, high level of cell viability was exhibited by HA-GO nanocomposites. These biological results suggested the 0.5 wt% HA-GO nanocomposite as a potential bioactive bone graft and a promising biomaterial for bone tissue regeneration, when compared to the pure HA.  相似文献   
8.
Hydroborate-based solid electrolytes have recently been successfully employed in high voltage, room temperature all-solid-state sodium batteries. The transfer to analogous lithium systems has failed up to now due to the lower conductivity of the corresponding lithium compounds and their high cost. Here LiB11H14 nido-hydroborate as a cost-effective building block and its high-purity synthesis is introduced. The crystal structures of anhydrous LiB11H14 as well as of LiB11H14-based mixed-anion solid electrolytes are solved and high ionic conductivities of 1.1 × 10−4 S cm−1 for Li2(B11H14)(CB11H12) and 1.1 × 10−3 S cm−1 for Li3(B11H14)(CB9H10)2 are obtained, respectively. LiB11H14 exhibits an oxidative stability limit of 2.6 V versus Li+/Li and the proposed decomposition products are discussed based on density functional theory calculations. Strategies are discussed to improve the stability of these compounds by modifying the chemical structure of the nido-hydroborate cage. Galvanostatic cycling in symmetric cells with two lithium metal electrodes shows a small overpotential increase from 22.5 to 30 mV after 620 h (up to 0.5 mAh cm−2), demonstrating that the electrolyte is compatible with metallic anodes. Finally, the Li2(B11H14)(CB11H12)  electrolyte is employed in a proof-of-concept half cell with a TiS2 cathode with a capacity retention of 82% after 150 cycles at C/5.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号