首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   10篇
电工技术   2篇
化学工业   17篇
金属工艺   2篇
机械仪表   3篇
建筑科学   2篇
矿业工程   1篇
能源动力   4篇
轻工业   9篇
无线电   6篇
一般工业技术   28篇
冶金工业   6篇
自动化技术   11篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   13篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有91条查询结果,搜索用时 18 毫秒
1.
2.
Development of electrode materials with well‐defined architectures is a fruitful and profitable approach for achieving highly‐efficient energy storage systems. A molecular‐scale hybrid system is presented based on the self‐assembly of CoNi‐layered double hydroxide (CoNi‐LDH) monolayers and the conducting polymer (poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate), denoted as PEDOT:PSS) into an alternating‐layer superlattice. Owing to the homogeneous interface and intimate interaction, the resulting CoNi‐LDH/PEDOT:PSS hybrid materials possess a simultaneous enhancement in ion and charge‐carrier transport and exhibit improved capacitive properties with a high specific capacitance (960 F g–1 at 2 A g–1) and excellent rate capability (83.7% retention at 30 A g–1). In addition, an in‐plane supercapacitor device with an interdigital design is fabricated based on a CoNi‐LDH/PEDOT:PSS thin film, delivering a significantly enhanced energy and power output (an energy density of 46.1 Wh kg–1 at 11.9 kW kg–1). Its application in miniaturized devices is further demonstrated by successfully driving a photodetector. These characteristics demonstrate that the molecular‐scale assembly of LDH monolayers and the conducting polymer is promising for energy storage and conversion applications in miniaturized electronics.  相似文献   
3.
A novel and efficient method to produce water dispersible superparamagnetic Fe3O4 nanoparticles is described. Nanoparticles prepared by non‐hydrolytic organic phase methods are subsequently functionalized with (3‐glycidyloxypropyl)trimethoxysilane, a linker that prevents aggregation and is available for subsequent coupling reactions with a wide range of polymers and biomolecules. Ring opening coupling reactions were used to coat the epoxy‐functionalized magnetite nanoparticles with aminated polymers (polyetheramines) or small molecules (arginine). The resulting nanoparticles, with hydrodynamic size of 13 nm, are found to be very stable over extended periods in water or PBS due to the presence of a dense stabilizer layer covalently anchored to the surface. Exceptionally high spin‐lattice relaxivity, r1, values of 17 s?1 mM?1, and low r2/r1 ratios of 3.3–3.8 were exhibited in the clinical MRI frequency range, irrespective of the molecule selected for nanoparticle stabilization. As a result the dispersions are excellent candidates for incorporation into multi‐functional assemblies or for use as positive contrast agent for MRI.  相似文献   
4.
5.
6.
The compartmentalization of size‐tuned luminescent semiconductor nanocrystal quantum dots (QDs) in four distinctive cell lines, which would be representative of the most likely environmental exposure routes to nanoparticles in humans, is studied. The cells are fixed and permeabilized prior to the addition of the QDs, thus eliminating any cell‐membrane‐associated effects due to active QD uptake mechanisms or to specificity of signaling routes in different cell types, but leaving intact the putative physical subcellular barriers. All quantitative assays are performed using a high content analysis (HCA) platform, thereby obtaining robust data on large cell populations. While smaller QDs 2.1 nm in diameter enter the nuclei and localize to the nucleoli in all cell types, the rate and dynamics of their passage vary depending on the cell origin. As the QD size is increased to 4.4 nm, penetration into the cell is reduced but each cell line displays its own cutoff size thresholds reflecting cell‐type‐determined cytoplasmic and nuclear pore penetration specificity. These results give rise to important considerations regarding the differential compartmentalization and susceptibility of organs, tissues, and cells to nanoparticles, and may be of prime importance for biomedical imaging and drug‐delivery research employing nanoparticle‐based probes and systems.  相似文献   
7.
8.
A group of ten dairy cows were treated for warble-fly with the organophosphorus pesticide, crufomate. The persistence of crufomate in the milk of the cows after treatment was determined by gas-liquid chromatography with a phosphorus-specific thermionic detector. The mean crufomate concentration in milk dropped below the Codex maximum limit of 0.05 mg kg?1 within 24 h of treatment. Crufomate was found to accumulate in the fat fraction of milk, giving rise to a higher concentration of crufomate in milk products, relative to the concentration in whole milk.  相似文献   
9.
10.
SAW devices may be configured as strain sensors, providing passive, wireless strain measurement in demanding conditions. A key consideration is the modeling of the sensors, enabling different device designs to be considered. This paper presents a simulation scheme using coupling-of-modes (COM) analysis which allows both the frequency response of a SAW strain sensor and its bias sensitivity to be evaluated. Example applications are presented to demonstrate the use of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号