首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4469篇
  免费   131篇
  国内免费   1篇
电工技术   44篇
综合类   4篇
化学工业   1010篇
金属工艺   84篇
机械仪表   76篇
建筑科学   156篇
矿业工程   17篇
能源动力   126篇
轻工业   332篇
水利工程   63篇
石油天然气   10篇
无线电   229篇
一般工业技术   729篇
冶金工业   1153篇
原子能技术   30篇
自动化技术   538篇
  2021年   57篇
  2020年   42篇
  2019年   53篇
  2018年   63篇
  2017年   70篇
  2016年   72篇
  2015年   63篇
  2014年   102篇
  2013年   264篇
  2012年   137篇
  2011年   214篇
  2010年   189篇
  2009年   166篇
  2008年   192篇
  2007年   176篇
  2006年   187篇
  2005年   155篇
  2004年   139篇
  2003年   142篇
  2002年   110篇
  2001年   81篇
  2000年   75篇
  1999年   79篇
  1998年   111篇
  1997年   97篇
  1996年   88篇
  1995年   93篇
  1994年   95篇
  1993年   82篇
  1992年   88篇
  1991年   40篇
  1990年   64篇
  1989年   56篇
  1988年   57篇
  1987年   49篇
  1986年   52篇
  1985年   81篇
  1984年   77篇
  1983年   65篇
  1982年   51篇
  1981年   46篇
  1980年   38篇
  1979年   50篇
  1978年   51篇
  1977年   39篇
  1976年   45篇
  1975年   33篇
  1974年   36篇
  1973年   27篇
  1972年   29篇
排序方式: 共有4601条查询结果,搜索用时 187 毫秒
1.
The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.  相似文献   
2.
RNA can be modified in over 100 distinct ways, and these modifications are critical for function. Pseudouridine synthases catalyse pseudouridylation, one of the most prevalent RNA modifications. Pseudouridine synthase 7 modifies a variety of substrates in Saccharomyces cerevisiae including tRNA, rRNA, snRNA, and mRNA, but the substrates for other budding yeast Pus7 homologues are not known. We used CRISPR-mediated genome editing to disrupt Candida albicans PUS7 and find absence leads to defects in rRNA processing and a decrease in cell surface hydrophobicity. Furthermore, C. albicans Pus7 absence causes temperature sensitivity, defects in filamentation, altered sensitivity to antifungal drugs, and decreased virulence in a wax moth model. In addition, we find C. albicans Pus7 modifies tRNA residues, but does not modify a number of other S. cerevisiae Pus7 substrates. Our data suggests C. albicans Pus7 is important for fungal vigour and may play distinct biological roles than those ascribed to S. cerevisiae Pus7.  相似文献   
3.
Using the psychometric paradigm of risk in conjunction with surveys of the Michigan public (n = 638) and a regional planning organization (n = 65), we examine the perceived risk and concerns associated with underwater oil pipelines, the Enbridge Line 5 pipeline in particular, and oil spills under ice. The fate of Line 5 is heavily debated in Michigan, specifically the portion that traverses the Straits of Mackinac, which can be ice-covered for months. Scant literature examines how individuals perceive the risk associated with Line 5, its alternatives, or potential spills in open water or under ice. Here we identify considerable concern regarding both the pipeline and the potential for spills under ice on behalf of the public, and increased concern about spills under ice on behalf of the planning organization. Organization members' concerns are significantly predicted by beliefs about the difficulty in remediating spills, however not by beliefs about spills' likelihood, difficulty in detection, noticeability, or consequences. Our results identify the need to better examine and communicate the risks associated with underwater pipelines and spills, both in open water and under ice, as well as options for remediating oil captured under ice. Furthermore, we recommend the adoption of decision-making and risk governance processes that explicitly expand analysis of the social, economic and environmental tradeoffs of underwater pipelines such as Line 5.  相似文献   
4.
The use of inlets for transferring aerosols from the environment to instrumentation can introduce uncertainty in the measurement of aerosol properties. Aerosol loss during this process is a non-negligible issue that may bias the subsequent measurements. These loss mechanisms include aspiration at the inlet head and deposition/evaporation/condensation during transport through the sampling lines. Coarse-mode aerosol is significantly impacted by the aspiration and inertial loss mechanisms within an inlet system. This work uses wind tunnel experiments to investigate aerosol losses through the Storm Peak Laboratory’s (SPL) new aerosol inlet system. The inlet is used extensively for both intensive field campaigns and long-term aerosol monitoring. The results of numerical simulations of the SPL aerosol inlet sampling efficiency are provided at several wind speeds, and experimental results demonstrate the system has a 50% cut off for the coarse-mode at an aerodynamic diameter of approximately 13?μm and wind speed of 0.5?m s?1. This investigation will lead to improved accuracy of in situ aerosol measurements at SPL and this system can be replicated at other atmospheric stations.

Copyright © 2019 American Association for Aerosol Research  相似文献   

5.
Doxorubicin is a highly effective chemotherapy agent used to treat many common malignancies. However, its use is limited by cardiotoxicity, and cumulative doses exponentially increase the risk of heart failure. To identify novel heart failure treatment targets, a zebrafish model of doxorubicin-induced cardiomyopathy was previously established for small-molecule screening. Using this model, several small molecules that prevent doxorubicin-induced cardiotoxicity both in zebrafish and in mouse models have previously been identified. In this study, exploration of doxorubicin cardiotoxicity is expanded by screening 2271 small molecules from a proprietary, target-annotated tool compound collection. It is found that 120 small molecules can prevent doxorubicin-induced cardiotoxicity, including 7 highly effective compounds. Of these, all seven exhibited inhibitory activity towards cytochrome P450 family 1 (CYP1). These results are consistent with previous findings, in which visnagin, a CYP1 inhibitor, also prevents doxorubicin-induced cardiotoxicity. Importantly, genetic mutation of cyp1a protected zebrafish against doxorubicin-induced cardiotoxicity phenotypes. Together, these results provide strong evidence that CYP1 is an important contributor to doxorubicin-induced cardiotoxicity and highlight the CYP1 pathway as a candidate therapeutic target for clinical cardioprotection.  相似文献   
6.
Surfactants are important chemical products, serving as emulsifiers and interfacial modifiers in the household detergents, personal care products, paints and coatings, foods, cosmetics, and pharmaceuticals industries. This review focuses upon recent advances in research and development to improve the ecological sustainability of surfactants throughout their life cycle, including derivation from renewable resources, production using green manufacturing principles, and improved biocompatibility and biodegradability during their consumer use and disposal stages. Biobased surfactants, derived from vegetable oils, polysaccharides, proteins, phospholipids, and other renewable resources, currently comprise approximately 24% of the surfactant market, and this percentage is expected to increase, especially in Asia. The use of renewables is attractive to consumers because of reduced production of CO2, a greenhouse gas associated with climate change. Enzymes can greatly increase process sustainability, through reduced use of organic solvent, water, and energy, and reduced formation of by-products and waste products. Among the enzymes being investigated for surfactant synthesis, lipases are the most robust, due to their relatively high biocatalytic activity, operational stability and their ability to form or cleave ester, amide, and thioester bonds. For enzymes to be robust catalysts of surfactants, further research and development is needed to improve catalytic productivity, stability and reduce their purchase cost.  相似文献   
7.
Accessing aldehydes from carboxylate moieties is often a challenging task. In this regard, carboxylate reductases (CARs) are promising catalysts provided by nature that are able to accomplish this task in just one step, avoiding over-reduction to the alcohol product. However, the heterologous expression of CARs can be quite difficult due to the excessive formation of insoluble protein, thus hindering further characterization and application of the enzyme. Here, the heterologous production of the carboxylate reductase from Nocardia otitidiscaviarum (NoCAR) was optimized by a combination of i) optimized cultivation conditions, ii) post-translational modification with a phosphopantetheinyl transferase and iii) selection of an appropriate expression strain. Especially, the selection of Escherichia coli tuner cells as host had a strong effect on the final 110-fold increase in the specific activity of NoCAR. This highly active NoCAR was used to reduce sodium benzoate to benzaldehyde, and it was successfully assembled with an in vitro regeneration of ATP and NADPH, being capable of reducing about 30 mM sodium benzoate with high selectivity in only 2 h of reaction.  相似文献   
8.
Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.  相似文献   
9.
Unintentional impurities often found in strontium titanate (doped or undoped) have hindered efforts to study individual impurities experimentally. To fill this gap, a computational survey of acceptor-type point defects of common intentional or unintentional impurities (Al, Cu, Fe, K, Mg, Mn, N, Na, Ni, and Zn) is presented. Utilizing defect formation energies from density functional theory using hybrid exchange correlation functionals in a grand canonical model of the defect chemistry, the equilibrium Fermi level (μe) was calculated as a function of processing conditions for pure SrTiO3, SrTiO3 individually doped with each impurity, and SrTiO3 co-doped with Al and N. Above a certain concentration, each impurity reduced the maximum predicted hole concentration relative to the intrinsic case. Al, Mg, Zn, K, and Na exhibited similar trends and behaved more like ideal acceptors while N, Ni, Fe, Mn, and Cu were all unique and pinned μe near or above the mid-gap in most conditions. Al/N:SrTiO3 also exhibited similar trends at 800°C for all Al/N ratios, but more variation at 25°C. Additionally, the behavior of Al:SrTiO3 was not recovered until Al/N = 104. This suggests that to achieve SrTiO3 with free holes at room temperature, the concentration of most impurities must be controlled.  相似文献   
10.
Standard nanoindentation tests are “high throughput” compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号