首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  自动化技术   22篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有22条查询结果,搜索用时 234 毫秒
1.
Instance-based attribute identification in database integration   总被引:3,自引:0,他引:3  
Most research on attribute identification in database integration has focused on integrating attributes using schema and summary information derived from the attribute values. No research has attempted to fully explore the use of attribute values to perform attribute identification. We propose an attribute identification method that employs schema and summary instance information as well as properties of attributes derived from their instances. Unlike other attribute identification methods that match only single attributes, our method matches attribute groups for integration. Because our attribute identification method fully explores data instances, it can identify corresponding attributes to be integrated even when schema information is misleading. Three experiments were performed to validate our attribute identification method. In the first experiment, the heuristic rules derived for attribute classification were evaluated on 119 attributes from nine public domain data sets. The second was a controlled experiment validating the robustness of the proposed attribute identification method by introducing erroneous data. The third experiment evaluated the proposed attribute identification method on five data sets extracted from online music stores. The results demonstrated the viability of the proposed method.Received: 30 August 2001, Accepted: 31 August 2002, Published online: 31 July 2003Edited by L. Raschid  相似文献
2.
Batch Nearest Neighbor Search for Video Retrieval   总被引:2,自引:0,他引:2  
To retrieve similar videos to a query clip from a large database, each video is often represented by a sequence of high- dimensional feature vectors. Typically, given a query video containing m feature vectors, an independent nearest neighbor (NN) search for each feature vector is often first performed. After completing all the NN searches, an overall similarity is then computed, i.e., a single content-based video retrieval usually involves m individual NN searches. Since normally nearby feature vectors in a video are similar, a large number of expensive random disk accesses are expected to repeatedly occur, which crucially affects the overall query performance. Batch nearest neighbor (BNN) search is stated as a batch operation that performs a number of individual NN searches. This paper presents a novel approach towards efficient high-dimensional BNN search called dynamic query ordering (DQO) for advanced optimizations of both I/O and CPU costs. Observing the overlapped candidates (or search space) of a pervious query may help to further reduce the candidate sets of subsequent queries, DQO aims at progressively finding a query order such that the common candidates among queries are fully utilized to maximally reduce the total number of candidates. Modelling the candidate set relationship of queries by a candidate overlapping graph (COG), DQO iteratively selects the next query to be executed based on its estimated pruning power to the rest of queries with the dynamically updated COG. Extensive experiments are conducted on real video datasets and show the significance of our BNN query processing strategy.  相似文献
3.
Data broadcast is an attractive data dissemination method in mobile environments. To improve energy efficiency, existing air indexing schemes for data broadcast have focused on reducing tuning time only, i.e., the duration that a mobile client stays active in data accesses. On the other hand, existing broadcast scheduling schemes have aimed at reducing access latency through nonflat data broadcast to improve responsiveness only. Not much work has addressed the energy efficiency and responsiveness issues concurrently. This paper proposes an energy-efficient indexing scheme called MHash that optimizes tuning time and access latency in an integrated fashion. MHash reduces tuning time by means of hash-based indexing and enables nonflat data broadcast to reduce access latency. The design of hash function and the optimization of bandwidth allocation are investigated in depth to refine MHash. Experimental results show that, under skewed access distribution, MHash outperforms state-of-the-art air indexing schemes and achieves access latency close to optimal broadcast scheduling.  相似文献
4.
Antagonistic communities refer to groups of people with opposite tastes, opinions, and factions within a community. Given a set of interactions among people in a community, we develop a novel pattern mining approach to mine a set of antagonistic communities. In particular, based on a set of user-specified thresholds, we extract a set of pairs of communities that behave in opposite ways with one another. We focus on extracting a compact lossless representation based on the concept of closed patterns to prevent exploding the number of mined antagonistic communities. We also present a variation of the algorithm using a divide and conquer strategy to handle large datasets when main memory is inadequate. The scalability of our approach is tested on synthetic datasets of various sizes mined using various parameters. Case studies on Amazon, Epinions, and Slashdot datasets further show the efficiency and the utility of our approach in extracting antagonistic communities from social interactions.  相似文献
5.
Wireless sensor networks have been widely used in civilian and military applications. Primarily designed for monitoring purposes, many sensor applications require continuous collection and processing of sensed data. Due to the limited power supply for sensor nodes, energy efficiency is a major performance concern in query processing. In this paper, we focus on continuous kNN query processing in object tracking sensor networks. We propose a localized scheme to monitor nearest neighbors to a query point. The key idea is to establish a monitoring area for each query so that only the updates relevant to the query are collected. The monitoring area is set up when the kNN query is initially evaluated and is expanded and shrunk on the fly upon object movement. We analyze the optimal maintenance of the monitoring area and develop an adaptive algorithm to dynamically decide when to shrink the monitoring area. Experimental results show that establishing a monitoring area for continuous kNN query processing greatly reduces energy consumption and prolongs network lifetime.  相似文献
6.
7.
A valid group is defined as a group of moving users that are within a distance threshold from one another for at least a minimum time duration. Unlike grouping of users determined by traditional clustering algorithms, members of a valid group are expected to stay close to one another during their movement. Each valid group suggests some social grouping that can be used in targeted marketing and social network analysis. The existing valid group mining algorithms are designed to mine a complete set of valid groups from time series of user location data, known as the user movement database. Unfortunately, there are considerable redundancy in the complete set of valid groups. In this paper, we therefore address this problem of mining the set of maximal valid groups. We first extend our previous valid group mining algorithms to mine maximal valid groups, leading to AMG and VGMax algorithms. We further propose the VGBK algorithm based on maximal clique enumeration to mine the maximal valid groups. The performance results of these algorithms under different sets of mining parameters are also reported.  相似文献
8.
9.
The idea of event detection is to identify interesting patterns from a constant stream of incoming news documents. Previous research in event detection has largely focused on identifying the first event or tracking subsequent events belonging to a set of pre-assigned topics such as earthquakes, airline disasters, etc. In this paper, we describe a new problem, called anticipatory event detection (AED), which aims to detect if a user-specified event has transpired. AED can be viewed as a personalized combination of event tracking and new event detection. We propose using sentence-level and document-level classification approaches to solve the AED problem for some restricted domains; given some user preferred topic event transition, we first train the corresponding event transition model, and then detect the occurrence of the transition for the stream of news covering the topic. Our experimental results on both terrorist-related and commercial events demonstrate the feasibility of our proposed AED solutions.
Kuiyu ChangEmail:
  相似文献
10.
Within the human computation paradigm, gamification is increasingly gaining interest. This is because an enjoyable experience generated by game features can be a powerful approach to attract participants. Although potentially useful, little research has been conducted into understanding the effectiveness of gamification in human computation. In this experimental study, we operationalized effectiveness as perceived engagement and user acceptance and examined it by comparing the performance of a gamified human computation system against a non-gamified version. We also investigate the determinants of acceptance and how their effects differ between these two systems. Analysis of our data found that participants experienced more engagement and showed higher behavioral intentions toward the gamified system. Moreover, perceived output quality and perceived engagement were significant determinants of acceptance of the gamified system. In contrast, determinants for acceptance of the non-gamified system were perceived output quality and perceived usability.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号