首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   6篇
电工技术   2篇
化学工业   10篇
建筑科学   1篇
轻工业   7篇
无线电   27篇
一般工业技术   26篇
冶金工业   14篇
原子能技术   1篇
自动化技术   29篇
  2022年   1篇
  2020年   4篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   11篇
  2009年   2篇
  2008年   10篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1993年   2篇
  1989年   1篇
  1984年   1篇
  1976年   2篇
  1974年   1篇
  1970年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
2.
Noncommensurate 2D interfaces hold great promise toward low friction and nanoelectromechanical applications. For identical constituents, the crystals interlock at specific rotational configurations leading to high barriers for slide. In contrast, nonidentical constituents comprising different lattice parameters should enable robust superlubricity for all rotational configurations. This is however not the case for gold–graphite interfaces, as both theory and experiments show scaling behavior of the sliding force as a function of the interface contact area. By simulating the sliding force for gold–graphite interfaces, this work shows that the origin for high force barriers at special angular configurations is a result of commensurability between the moiré structure and the contact geometry. Consequently, this paper suggests new geometries that can potentially overcome such commensurability effects to enable robust superlubricity.  相似文献   
3.
The two-campus transport problem (TCTP) is a dial-a-ride problem with only two destinations. The problem is motivated by a transport problem between two campuses of an academic college. The two campuses are located in two different cities. Lecturers living in one city are sometimes asked to teach at the other city’s campus. The problem is that of transporting the lecturers from one campus to the other, using a known set of vehicles, so as to minimize the time the lecturers wait for their transport. We mathematically model the general TCTP, and provide an algorithm that solves it, which is polynomial in the number of lecturers. The algorithm is based on a reduction to a shortest path problem.  相似文献   
4.
5.
Equilibrium segregation of Ti to Au–sapphire interfaces was measured from dewetted Au(Ti) films on the (0001) surface of sapphire. Quantitative energy dispersive spectroscopy was used to determine a Ti excess at the Au–sapphire interface of 2.2 Ti atoms/nm2, which together with an excess of 4.6 Ti atoms/nm2 at the (0001) sapphire surface, is associated with a decrease in the solid–solid Au–sapphire interface energy. Quantitative high resolution transmission electron microscopy showed that the segregated Ti is distributed within a 1.54-nm thick intergranular film at the Au–sapphire interface, which is not a bulk phase but rather an equilibrium interface state. As a result, Ti segregation without the formation of a bulk reaction at the interface is associated with a decreased interface energy, improved wetting, and may be an important part of the total complex mechanism responsible for improved wetting and spreading in “reactive” braze systems.  相似文献   
6.
ABSTRACT

Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe). Therefore, assessing iron and zinc bioavailability in biofortified crops is imperative to evaluate the efficacy of breeding programs. This review aimed to investigate the advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. In vitro, animal and isotopic human studies have shown high iron and zinc bioavailability in biofortified staple food crops. Human studies provide direct knowledge regarding the effectiveness of biofortification, however, human studies are time consuming and are more expensive than in vitro and animal studies. Moreover, in vitro studies may be a useful preliminary screening method to identify promising plant cultivars, however, these studies cannot provide data that are directly applicable to humans. None of these methods provides complete information regarding mineral bioavailability, thus, a combination of these methods should be the most appropriate strategy to investigate the effectiveness of zinc and iron biofortification programs.  相似文献   
7.
8.
Cross-modal analysis is a natural progression beyond processing of single-source signals. Simultaneous processing of two sources can reveal information that is unavailable when handling the sources separately. Indeed, human and animal perception, computer vision, weather forecasting, and various other scientific and technological fields can benefit from such a paradigm. A particular cross-modal problem is localization: out of the entire data array originating from one source, localize the components that best correlate with the other. For example, auditory and visual data sampled from a scene can be used to localize visual events associated with the sound track. In this paper we present a rigorous analysis of fundamental problems associated with the localization task. We then develop an approach that leads efficiently to a unique, high definition localization outcome. Our method is based on canonical correlation analysis (CCA), where inherent ill-posedness is removed by exploiting sparsity of cross-modal events. We apply our approach to localization of audio-visual events. The proposed algorithm grasps such dynamic audio-visual events with high spatial resolution. The algorithm effectively detects the pixels that are associated with sound, while filtering out other dynamic pixels, overcoming substantial visual distractions and audio noise. The algorithm is simple and efficient thanks to its reliance on linear programming, while being free of user-defined parameters  相似文献   
9.
The failure criterion of Leguillon at reentrant corners in brittle elastic materials (Leguillon 2002, Eur J Mech A/Solids 21: 61–72; Leguillon et al. (2003), Eur J Mech A—Solids 22(4): 509–524) validated in (Yosibash et al. 2004, Int J Fract 125(3–4): 307–333) for mode I loading is being extended to mixed mode loading and is being validated by experimental observations. We present an explicit derivation of all quantities involved in the computation of the failure criterion. The failure criterion is validated by predicting the critical load and crack initiation angle of specimens under mixed mode loading and comparison to experimental observations on PMMA (polymer) and Macor (ceramic) V-notched specimens.  相似文献   
10.
In energy storage materials, large surface areas and oriented structures are key architecture design features for improving performance through enhanced electrolyte access and efficient electron conduction pathways. Layered hydroxides provide a tunable materials platform with opportunities for achieving such nanostructures via bottom‐up syntheses. These nanostructures, however, can degrade in the presence of the alkaline electrolytes required for their redox‐based energy storage. A layered Co(OH)2–organic hybrid material that forms a hierarchical structure consisting of micrometer‐long, 30 nm diameter tubes with concentric curved layers of Co(OH)2 and 1‐pyrenebutyric acid is reported. The nanotubular structure offers high surface area as well as macroscopic orientation perpendicular to the substrate for efficient electron transfer. Using a comparison with flat films of the same composition, it is demonstrated that the superior performance of the nanotubular films is the result of a large accessible surface area for redox activity. It is found that the organic molecules used to template nanotubular growth also impart stability to the hybrid when present in the alkaline environments necessary for redox function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号