首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1958篇
  免费   134篇
  国内免费   8篇
电工技术   35篇
综合类   4篇
化学工业   442篇
金属工艺   72篇
机械仪表   105篇
建筑科学   29篇
能源动力   63篇
轻工业   200篇
水利工程   6篇
无线电   384篇
一般工业技术   404篇
冶金工业   131篇
原子能技术   25篇
自动化技术   200篇
  2023年   33篇
  2022年   23篇
  2021年   63篇
  2020年   61篇
  2019年   74篇
  2018年   64篇
  2017年   70篇
  2016年   79篇
  2015年   59篇
  2014年   88篇
  2013年   134篇
  2012年   129篇
  2011年   151篇
  2010年   112篇
  2009年   106篇
  2008年   108篇
  2007年   79篇
  2006年   82篇
  2005年   71篇
  2004年   64篇
  2003年   50篇
  2002年   61篇
  2001年   51篇
  2000年   42篇
  1999年   43篇
  1998年   58篇
  1997年   37篇
  1996年   22篇
  1995年   10篇
  1994年   10篇
  1993年   11篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2100条查询结果,搜索用时 31 毫秒
1.
Magnetoelectric (ME) property modulation in heterostructured (Ni0.5Zn0.5)Fe2O4/Pt/Pb(Zr0.3Ti0.7)O3 (NZFO/Pt/PZT) thin films on platinized Si substrate by thermal annealing condition variation was studied. In an attempt to prevent interfacial reaction between NZFO and PZT layers during high temperature annealing, thin Pt layer was deposited which can serve as inter-diffusion barrier as well as electrode. The ferroelectric, magnetic, and ME properties of the heterostructured film were noticeably modulated due to microstructural evolution and clamping relaxation developed during thermal annealing process. Room temperature ME voltage coefficient of the heterostructured thin films was enhanced with increasing annealing temperature and reached to 29 mV/cm·Oe when annealed at 650 °C.  相似文献   
2.
In this paper, the fabrication of novel burnable absorber fuel concepts with oxide pellets, containing either a lumped Gd2O3 rod, a mini‐pellet, or a spherical particle in the centerline of the oxide pellet, is investigated to propose the lumped Gd2O3 burnable absorber fuel concept to improve nuclear fuel performance with longer fuel cycle lengths and better fuel utilization. The unique characteristic of the lumped Gd2O3 burnable absorber fuel is its high spatial self‐shielding factor that reduces its burnout rate and, therefore, improves the reactivity control. Oxide pellets containing lumped Gd2O3 were fabricated by using a combination of cold isostatic pressing and microwave sintering at 1500°C to understand the potential technical issues in the fabrication of duplex burnable absorber fuel. The effect of the sintering temperature on the densification and phase transformation of 8 wt.% yttria‐stabilized zirconia, a surrogate for UO2, was investigated. Spherical Gd2O3 particles were fabricated by the drip casting of a Gd2O3‐based Na alginate solution. The fabrication of duplex oxide pellets by using presintered Gd2O3 mini‐pellets resulted in internal cracks at the interface between the Gd2O3 and 8 wt.% yttria‐stabilized zirconia layers because of the mismatch of their densification. However, the formation of interfacial cracks was eliminated by controlling the initial sintered density of the lumped Gd2O3.  相似文献   
3.
In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.  相似文献   
4.
Compared with inorganic or perovskite solar cells, the relatively large non-radiative recombination voltage losses (ΔVnon-rad) in organic solar cells (OSCs) limit the improvement of the open-circuit voltage (Voc). Herein, OSCs are fabricated by adopting two pairs of D–π–A polymers (PBT1-C/PBT1-C-2Cl and PBDB-T/PBDB-T-2Cl) as electron donors and a wide-bandgap molecule BTA3 as the electron acceptor. In these blends, a charge-transfer state energy (ECT) as high as 1.70–1.76 eV is achieved, leading to small energetic differences between the singlet excited states and charge-transfer states (ΔECT ≈ 0.1 eV). In addition, after introducing chlorine atoms into the π-bridge or the side chain of benzodithiophene (BDT) unit, electroluminescence external quantum efficiencies as high as 1.9 × 10−3 and 1.0 × 10−3 are realized in OSCs based on PBTI-C-2Cl and PBDB-T-2Cl, respectively. Their corresponding ΔVnon-rad are 0.16 and 0.17 V, which are lower than those of OSCs based on the analog polymers without a chlorine atom (0.21 and 0.24 V for PBT1-C and PBDB-T, respectively), resulting in high Voc of 1.3 V. The ΔVnon-rad of 0.16 V and Voc of 1.3 V achieved in PBT1-C-2Cl:BTA3 OSCs are thought to represent the best values for solution-processed OSCs reported in the literature so far.  相似文献   
5.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
6.
Journal of Mechanical Science and Technology - Computational fluid dynamics (CFD) has become an essential tool for optimizing the design and diagnosing the operation of a boiler. However, the...  相似文献   
7.
8.
9.
In oxy‐coal combustion for carbon capture and storage, oxygen and recirculated CO2 are used as oxidizers instead of air to produce CO2‐rich flue gas. Owing to differences between the physical and chemical properties of CO2 and N2, the development of a burner and boiler system based on fundamental understanding of the flame type, heat transfer, and NOx emission is required. In this study, computational fluid dynamic analysis incorporating comprehensive coal conversion models was performed to investigate the combustion characteristics of a 30 MWth tangential vane swirl pulverized coal burner. Various burner design parameters were evaluated, including the influence of the burner geometry on the swirl strength, direct O2 injection, and O2 concentrations in the primary and secondary oxidizers. The flame characteristics were sensitive to the oxygen concentration in the primary oxidizer. The performance of direct O2 injection around the primary oxidizer with low O2 concentration was dependent on the mixing of the fuel and oxidizer. The predictions showed that swirl number adjustment and careful direct oxygen injection design are essential for retrofitting air‐firing pulverized coal burners as oxy‐firing burners.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号