首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  自动化技术   3篇
  2008年   3篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
Artificial neural networks (ANNs) have been widely used to model environmental processes. The ability of ANN models to accurately represent the complex, non-linear behaviour of relatively poorly understood processes makes them highly suited to this task. However, the selection of an appropriate set of input variables during ANN development is important for obtaining high-quality models. This can be a difficult task when considering that many input variable selection (IVS) techniques fail to perform adequately due to an underlying assumption of linearity, or due to redundancy within the available data.This paper focuses on a recently proposed IVS algorithm, based on estimation of partial mutual information (PMI), which can overcome both of these issues and is considered highly suited to the development of ANN models. In particular, this paper addresses the computational efficiency and accuracy of the algorithm via the formulation and evaluation of alternative techniques for determining the significance of PMI values estimated during selection. Furthermore, this paper presents a rigorous assessment of the PMI-based algorithm and clearly demonstrates the superior performance of this non-linear IVS technique in comparison to linear correlation-based techniques.  相似文献
2.
Recent trends in the management of water supply have increased the need for modelling techniques that can provide reliable, efficient, and accurate representation of the complex, non-linear dynamics of water quality within water distribution systems. Statistical models based on artificial neural networks (ANNs) have been found to be highly suited to this application, and offer distinct advantages over more conventional modelling techniques. However, many practitioners utilise somewhat heuristic or ad hoc methods for input variable selection (IVS) during ANN development.This paper describes the application of a newly proposed non-linear IVS algorithm to the development of ANN models to forecast water quality within two water distribution systems. The intention is to reduce the need for arbitrary judgement and extensive trial-and-error during model development. The algorithm utilises the concept of partial mutual information (PMI) to select inputs based on the analysis of relationship strength between inputs and outputs, and between redundant inputs. In comparison with an existing approach, the ANN models developed using the IVS algorithm are found to provide optimal prediction with significantly greater parsimony. Furthermore, the results obtained from the IVS procedure are useful for developing additional insight into the important relationships that exist between water distribution system variables.  相似文献
3.
The selection of Genetic Algorithm (GA) parameters is a difficult problem, and if not addressed adequately, solutions of good quality are unlikely to be found. A number of approaches have been developed to assist in the calibration of GAs, however there does not exist an accepted method to determine the parameter values. In this paper, a GA calibration methodology is proposed based on the convergence of the population due to genetic drift, to allow suitable GA parameter values to be determined without requiring a trial-and-error approach. The proposed GA calibration method is compared to another GA calibration method, as well as typical parameter values, and is found to regularly lead the GA to better solutions, on a wide range of test functions. The simplicity and general applicability of the proposed approach allows suitable GA parameter values to be estimated for a wide range of situations.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号