首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   80篇
  国内免费   11篇
电工技术   19篇
综合类   5篇
化学工业   243篇
金属工艺   30篇
机械仪表   67篇
建筑科学   41篇
矿业工程   1篇
能源动力   77篇
轻工业   119篇
水利工程   15篇
石油天然气   21篇
无线电   100篇
一般工业技术   213篇
冶金工业   63篇
原子能技术   5篇
自动化技术   196篇
  2024年   3篇
  2023年   22篇
  2022年   17篇
  2021年   71篇
  2020年   68篇
  2019年   84篇
  2018年   105篇
  2017年   79篇
  2016年   85篇
  2015年   35篇
  2014年   67篇
  2013年   133篇
  2012年   65篇
  2011年   82篇
  2010年   48篇
  2009年   48篇
  2008年   25篇
  2007年   20篇
  2006年   8篇
  2005年   13篇
  2004年   4篇
  2003年   11篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   13篇
  1981年   3篇
  1979年   5篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1970年   5篇
  1966年   6篇
  1961年   3篇
排序方式: 共有1215条查询结果,搜索用时 62 毫秒
1.
The effect of pMDI on physical and mechanical properties of the particleboards made from urea–glyoxal resin was investigated. The nontoxic and ecofriendly urea–glyoxal (UG) resin was synthesized under weak acid conditions, and its different properties were measured. Then, pMDI at various contents (4, 6 and 8% on resin solids) was added to the UG resin prepared. The thermal and physicochemical properties of the resins prepared as well as their water absorption, flexural properties (flexural modulus and strength) and internal bond (IB) strength of the particleboard panels bonded with them were measured according to standard methods. According to the physicochemical results obtained, the addition of pMDI significantly accelerated the gel time and increased the viscosity and solids content of UG resins. Differential scanning calorimetry indicated that the addition of pMDI decreases the onset and curing temperatures of the UG resin. Physical analysis results of the panels indicated that the particleboards made from UG resins with isocyanate yielded lower water absorption when compared to those bonded with the control UG resins. Based on the findings of this research work, the mechanical properties of particleboard panels bonded with UG resins could be significantly enhanced by the addition of increasing percentages of pMDI. The panels having 8 wt% pMDI exhibited the highest flexural modulus, flexural strength and IB strength value and the lowest water absorption among all the panels prepared.  相似文献   
2.
3.
The shape-shifting behavior of liquid crystal networks (LCNs) and elastomers (LCEs) is a result of an interplay between their initial geometrical shape and their molecular alignment. For years, reliance on either one-step in situ or two-step film processing techniques has limited the shape-change transformations from 2D to 3D geometries. The combination of various fabrication techniques, alignment methods, and chemical formulations developed in recent years has introduced new opportunities to achieve 3D-to-3D shape-transformations in large scales, albeit the precise control of local molecular alignment in microscale 3D constructs remains a challenge. Here, the voxel-by-voxel encoding of nematic alignment in 3D microstructures of LCNs produced by two-photon polymerization using high-resolution topographical features is demonstrated. 3D LCN microstructures (suspended films, coils, and rings) with designable 2D and 3D director fields with a resolution of 5 µm are achieved. Different shape transformations of LCN microstructures with the same geometry but dissimilar molecular alignments upon actuation are elicited. This strategy offers higher freedom in the shape-change programming of 3D LCN microstructures and expands their applicability in emerging technologies, such as small-scale soft robots and devices and responsive surfaces.  相似文献   
4.
The objectives of this study were to determine the optimal extraction conditions of polyphenols from Syzygium cumini seeds by response surface methodology and investigate their antioxidant activity and inhibition on α-amylase and pancreatic lipase. As results, the optimal extraction conditions in the ultrasonic extraction process which maximised total polyphenols content, minimised the IC50 values of α-amylase and pancreatic lipase were determined as follows: extraction time 60 min, ethanol concentration 63% and solvent/solid ratio 44 mL g−1. The main phenolic compounds in partially purified fraction of Syzygium cumini seeds were catechin, epicatechin, kaempferol, gallic, 5-caffeoylquinic, caffeic and ferulic acids. In addition, the partially purified fraction inhibited 87.66 ± 5.55 and 86.61 ± 3.15% of α-amylase and pancreatic lipase, respectively. The results suggested that Syzygium cumini seeds could be explored as a natural antioxidant and could be used as a source of highly antidiabetic and anti-obesity bioactive compounds.  相似文献   
5.
A hydrogen liquefaction concept with an innovative configuration and a capacity of 4 kg·s-1 (345.6 t·d-1) is developed. The concept involves an ammonia absorption refrigeration system for the pre-cooling of hydrogen and MR streams from 25 ℃ to -30 ℃. The ammonia absorption refrigeration system is fed by exhaust gases of the Parand gas power plant that are normally dissipated to the environment with a temperature of 546 ℃. The simulation is performed by Aspen HYSYS V9.0, using two separate equations of state for simulating hydrogen and MR streams to gain more accurate results especially for ortho-para conversion. Results show that conversion enthalpy estimated by Aspen HYSYS, fits very well to the experimental data. Determining the important independent variables and composition of MRs are done using trial and error procedure, a functional and straightforward method for complicated systems. The minimum temperature limit in the cooling section is lowered, and an ortho-para converter is implemented in this section. The proposed concept performs well from energy aspects and leads to COP and SEC equal to 0.271 and 4.54 kW·h·kg-1, respectively. The main advantage of this study is in the low SEC, eliminating the losses of the distribution network, and improving the ability of the hydrogen liquefaction for energy storage in off-peak times.  相似文献   
6.
Recently, nanocomposite photocatalysts based on semiconductors have attracted much attention due to their suitable bandgap. Combination of tow of several semiconductors can slow down the electron-hole recombination. In this regard, we have depicted an eco-friendly and green fabrication technique to synthesize RGO/Cu nanocomposite by the reduction of graphene oxide and Cu2+ ion utilizing spearmint extract as a reductant and capping agent. The sample was identified by FTIR, XRD, FESEM, EDS, HRTEM, and CV. The results of photocatalytic performance revealed that RGO/Cu is an efficient catalyst for degrading organic pollutants. This compound can eliminate Rhodamine B (RhB) and Methylene blue (MB) 91.0% and 72.0%, respectively.  相似文献   
7.
The thermosiphon is a passive heat exchange method, which circulates a fluid within a system without the need for any electrical or mechanical pumps. The thermosiphon is based on natural convection where the thermal expansion occurs when the temperature difference has a corresponding difference in density across the loop. Thermosiphons are used in different applications such as solar energy collection, automotive systems, and electronics. The current study aims to investigate thermosiphon thermal performance used in domestic applications. The thermal performance of a thermosiphon has been studied by many researchers; however, according to the knowledge of the authors, the influence of the amount of the working fluid on the thermal output has not yet been investigated. Therefore, the influence of the amount of working fluid within the riser pipe has been investigated on the thermal performance of the thermosiphon. In the current study, a computational fluid dynamics model is involved. This model has been validated by comparison with experimental findings. The maximum variation between numerical and experimental results is 14.2% and 11.2% for the working fluid at the inlet and outlet of the absorber pipe, respectively. Furthermore, the results show that the amount of working fluid inside the closed thermosiphon has a great influence on the thermal performance of the system. Additionally, it is found that Case-B, when the amount of working fluid is less than by 10% compared to the traditional model, is the best case among all cases under study. Furthermore, a correlation equation to predict water temperature at the exit of the absorber pipe has been established with an accuracy of 95.05%.  相似文献   
8.
9.
The Egyptian oil and gas industry is suffering from severe metal corrosion problems, particularly microbial-induced corrosion. There is limited knowledge on the corrosion inhibition of carbon steels in the presence of an acidophilic, iron-oxidizing bacterial species Acidithiobacillus ferrooxidans. Therefore, in this study, novel Gemini cationic surfactants, in three forms depending on variation in alkyl chains of 8, 12, and 16 carbon atoms named FHPAO, FHPAD, and FHPAH, respectively, were synthesized and characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy. The surface parameters and the thermodynamic of the synthesized surfactants were evaluated at three different temperatures, 20, 40, and 60 °C. The synthesized Gemini cationic surfactants were tested as broad-spectrum antimicrobial, antibacterial and anticandida agents. They evaluated as biocides and corrosion inhibitors against Acidithiobacillus ferrooxidans. FHPAD showed higher adsorption ability at the solution interface and higher affinity to construct micelles than FHPAO and FHPAH. Both adsorption and micellization processes were hydrophobic and temperature dependent. FHPAO, FHPAD and FHPAH exhibited wide-spectrum antimicrobial activities, and the highest activity and the lowest minimum bactericidal/fungicidal inhibitory concentrations were attributed to FHPAD. Furthermore, synthesized FHPAD demonstrated the highest metal corrosion inhibition efficiency of 95.5% at 5 mM in comparison to 87.5% and 81.7% for FHPAO and FHPAH, respectively. In conclusion, this study provides novel synthesized cationic surfactants with many applications in the oil and gas industry, such as broad-spectrum antimicrobial, biocides, and corrosion inhibitors for acidophilic, iron-oxidizing bacterial species Acidithiobacillus ferrooxidans.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号