首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   41篇
电工技术   7篇
化学工业   132篇
金属工艺   7篇
机械仪表   11篇
建筑科学   15篇
能源动力   10篇
轻工业   55篇
水利工程   2篇
无线电   47篇
一般工业技术   135篇
冶金工业   11篇
原子能技术   1篇
自动化技术   156篇
  2023年   17篇
  2022年   8篇
  2021年   22篇
  2020年   18篇
  2019年   21篇
  2018年   23篇
  2017年   21篇
  2016年   19篇
  2015年   18篇
  2014年   22篇
  2013年   55篇
  2012年   42篇
  2011年   40篇
  2010年   34篇
  2009年   26篇
  2008年   30篇
  2007年   15篇
  2006年   18篇
  2005年   14篇
  2004年   10篇
  2003年   9篇
  2002年   11篇
  2001年   4篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   11篇
  1993年   10篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1948年   1篇
排序方式: 共有589条查询结果,搜索用时 31 毫秒
1.
We are aiming for a blue print for synthesizing (moderately complex) subcellular systems from molecular components and ultimately for constructing life. However, without comprehensive instructions and design principles, we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo according to complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Herein, we describe the simplest pathways for the efficient generation of ATP and electrochemical ion gradients. We have estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the need for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow the major physicochemical conditions inside cells to be monitored and tuned.  相似文献   
2.
Herein, nanocrystals of Er3+ and Er3+, Yb3+ co-doped NaYF4 upconversion (UC) phosphor were prepared via the reverse-microemulsion method. The impact of different concentrations of Er3+ ions on the UC emission intensity after 980?nm diode laser excitation is discussed. The structure, morphology and composition of the nanophosphors were confirmed by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and the results showed the presence of NaYF4 nanocrystals with hexagonal phases of NaYF4. The UC spectra revealed two emission bands including a green and a red emission band and the CIE coordinate for the samples were estimated. The present research revealed that the reverse-microemulsion approach will be suitable for the synthesis of efficient upconversion nanophosphors.  相似文献   
3.
Telecommunication Systems - Signals from indoor access points in a wireless fidelity suffer from high attenuation as a result of the thick walls and metal structures in the multilevel-storey...  相似文献   
4.
5.
Digital distractions can interfere with goal attainment and lead to undesirable habits that are hard to get red rid of. Various digital self-control interventions promise support to alleviate the negative impact of digital distractions. These interventions use different approaches, such as the blocking of apps and websites, goal setting, or visualizations of device usage statistics. While many apps and browser extensions make use of these features, little is known about their effectiveness. This systematic review synthesizes the current research to provide insights into the effectiveness of the different kinds of interventions. From a search of the ‘ACM’, ‘Springer Link’, ‘Web of Science’, ’IEEE Xplore’ and ‘Pubmed’ databases, we identified 28 digital self-control interventions. We categorized these interventions according to their features and their outcomes. The interventions showed varying degrees of effectiveness, and especially interventions that relied purely on increasing the participants' awareness were barely effective. For those interventions that sanctioned the use of distractions, the current literature indicates that the sanctions have to be sufficiently difficult to overcome, as they will otherwise be quickly dismissed. The overall confidence in the results is low, with small sample sizes, short study duration, and unclear study contexts. From these insights, we highlight research gaps and close with suggestions for future research.  相似文献   
6.
Past sequencing campaigns overlooked small proteins as they seemed to be irrelevant due to their small size. However, their occurrence is widespread, and there is growing evidence that these small proteins are in fact functionally very important in organisms found in all kingdoms of life. Within a global proteome analysis for small proteins of the archaeal model organism Haloferax volcanii, the HVO_2922 protein has been identified. It is differentially expressed in response to changes in iron and salt concentrations, thus suggesting that its expression is stress-regulated. The protein is conserved among Haloarchaea and contains an uncharacterized domain of unknown function (DUF1508, UPF0339 family protein). We elucidated the NMR solution structure, which shows that the isolated protein forms a symmetrical dimer. The dimerization is found to be concentration-dependent and essential for protein stability and most likely for its functionality, as mutagenesis at the dimer interface leads to a decrease in stability and protein aggregation.  相似文献   
7.
Electrolyte additives have been widely used to address critical issues in current metal (ion) battery technologies. While their functions as solid electrolyte interface forming agents are reasonably well-understood, their interactions in the liquid electrolyte environment remain rather elusive. This lack of knowledge represents a significant bottleneck that hinders the development of improved electrolyte systems. Here, the key role of additives in promoting cation (e.g., Li+) desolvation is unraveled. In particular, nitrate anions (NO3) are found to incorporate into the solvation shells, change the local environment of cations (e.g., Li+) as well as their coordination in the electrolytes. The combination of these effects leads to effective Li+ desolvation and enhanced battery performance. Remarkably, the inexpensive NaNO3 can successfully substitute the widely used LiNO3 offering superior long-term stability of Li+ (de-)intercalation at the graphite anode and suppressed polysulfide shuttle effect at the sulfur cathode, while enhancing the performance of lithium–sulfur full batteries (initial capacity of 1153 mAh g−1 at 0.25C) with Coulombic efficiency of ≈100% over 300 cycles. This work provides important new insights into the unexplored effects of additives and paves the way to developing improved electrolytes for electrochemical energy storage applications.  相似文献   
8.
Magnetic Resonance Materials in Physics, Biology and Medicine - Innovative physiologic MRI development focuses on depiction of heterogenous vascular and metabolic features in glioblastoma. For this...  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号