首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   24篇
电工技术   2篇
化学工业   77篇
金属工艺   3篇
机械仪表   2篇
建筑科学   1篇
矿业工程   1篇
能源动力   2篇
轻工业   22篇
水利工程   3篇
石油天然气   1篇
无线电   8篇
一般工业技术   33篇
冶金工业   23篇
自动化技术   31篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   11篇
  2020年   8篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   10篇
  2015年   10篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   14篇
  2010年   10篇
  2009年   11篇
  2008年   9篇
  2007年   9篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
1.
Titanium dioxide nanoparticles (nano‐TiO2) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano‐TiO2 on human and environmental health is provided. A meta‐analysis is conducted to analyze the toxicity of nano‐TiO2 to the liver, circulatory system, and DNA in humans. To assess the environmental impacts of nano‐TiO2, aquatic environments that receive high nano‐TiO2 inputs are focused on, and the toxicity of nano‐TiO2 to aquatic organisms is discussed with regard to the present and predicted environmental concentrations. Genotoxicity, damage to membranes, inflammation and oxidative stress emerge as the main mechanisms of nano‐TiO2 toxicity. Furthermore, nano‐TiO2 can bind with free radicals and signal molecules, and interfere with the biochemical reactions on plasmalemma. At the higher organizational level, nano‐TiO2 toxicity is manifested as the negative effects on fitness‐related organismal traits including feeding, reproduction and immunity in aquatic organisms. Bibliometric analysis reveals two major research hot spots including the molecular mechanisms of toxicity of nano‐TiO2 and the combined effects of nano‐TiO2 and other environmental factors such as light and pH. The possible measures to reduce the harmful effects of nano‐TiO2 on humans and non‐target organisms has emerged as an underexplored topic requiring further investigation.  相似文献   
2.
The best packaging conditions for rocket salad were assessed by subsequent experimental trials. In the first step, a preliminary screening of different packaging materials was performed and two micro‐perforated oriented polypropylene films with different micro‐hole diameters (90 and 110 μm) were selected as best packaging solutions. In the subsequent experimental step, modified headspace conditions were applied without any improvement on product quality. In the last step, the effects of an ethylene adsorbent were analysed. Rocket salad packaged in both films with the ethylene adsorbent recorded a shelf life of about 16 days, compared to the control samples that remained acceptable for 13 days. During storage, the microbial quality (mesophilic and psychrotrophic bacteria, pseudomonadaceae, lactic acid bacteria, yeasts, total coliforms and enterobacteriacae), the pH, the colour changes and the main sensory parameters were also monitored.  相似文献   
3.
Emulsifier‐free batch emulsion polymerization of n‐butyl acrylate and its semi‐batch copolymerization with 2,2,3,3,4,4,5,5‐octafluoropentyl acrylate and 2,2,3,4,4,4‐hexafluorobutyl acrylate both mediated by poly(acrylic acid) containing the trithiocarbonate group in the chain was employed to produce amphiphilic triblock copolymers. The polymerization‐induced self‐assembly of these copolymers in aqueous media gave rise to spherical core–shell particles. Irrespective of the experimental conditions, the polymeric product was characterized by a bimodal molecular weight distribution. The apparent violation of the reversible addition–fragmentation chain transfer polymerization mechanism may be attributed to restricted accessibility of the trithiocarbonate group in the self‐assembled block copolymers for propagating radicals that enter into the particle. Mean‐field theoretical arguments were employed to explain the exclusively spherical morphology of the particles observed in the experiment. © 2019 Society of Chemical Industry  相似文献   
4.
The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analogues, the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between the ligand, C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site, per se, to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we showed that increasing charge along the rim of the binding cleft of the protein kinase C δ C1 b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands and thus contributes an element to the structure–activity relations for C1 domain ligands. Coexpressing pairs of C1‐containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain.  相似文献   
5.
High-temperature proton conductors based on acceptor-doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr-ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X-ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain-boundary conductivities. The complex analysis of the obtained data shows that a low-level substitution of Zr4+- with Sn4+-ions is a competent approach for designing new proton-conducting electrolytes attractive for high-temperature applications.  相似文献   
6.
7.
This paper presents and discusses an extension of the pseudotransient continuation-based steady state solver for hydraulic networks proposed previously to the case of zero flow rates. The original solver, which reduces the solution of the governing nonlinear algebraic equations to the numerical integration of an initial-value problem, has problems in situations in which the head derivative of the flow rate tends to infinity, as is the case with zero flow rates. The extension is on the basis of the use of a model headloss-flow relationship that coincides with the true one at zero and has a finite head derivative at that point. This modified steady state solver is free from some convergence problems that occur in Newton-Raphson method-based solvers when analyzing a pipe network with control devices. The paper includes the results of the numerical analysis of test networks, which demonstrate the convergence of the modified steady state solver for cases in which existing steady state solvers have troubles.  相似文献   
8.
In multi‐objective optimization, a design is defined to beit pareto‐optimal if no other design exists that is better with respect to one objective, and as good with respect to other objectives. In this paper, we first show that if a topology is pareto‐optimal, then it must satisfy certain properties associated with the topological sensitivity field, i.e. no further comparison is necessary. This, in turn, leads to a deterministic, i.e. non‐stochastic, method for efficiently generating pareto‐optimal topologies using the classic fixed‐point iteration scheme. The proposed method is illustrated, and compared against SIMP‐based methods, through numerical examples. In this paper, the proposed method of generating pareto‐optimal topologies is limited to bi‐objective optimization, namely compliance–volume and compliance–compliance. The future work will focus on extending the method to non‐compliance and higher dimensional pareto optimization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
9.
I2-doped and pyrrole ring-iodinated semi-conducting oligomers of N-vinyl-3-alkyl-2-phenylpyrroles have been synthesized by free-radical polymerization of the above monomers (AIBN, 2–5 wt%, 60–80 °C) and further exposure of the oligomers obtained to I2 vapor. The parent oligomers exhibit paramagnetic and fluorescent properties and stable up to 300–370 °C.  相似文献   
10.
Titanium ethoxide [Ti(OEt)4] was modified with aminobenzoic acid (AB) or aminosalicylic acid (AS) in order to control the hydrolysis and condensation rates, and to allow the preparation of organic–inorganic hybrid materials. A suite of complementary techniques, including Fourier transform infrared spectroscopy, NMR, SEM, thermogravimetric analysis, and X-ray diffraction, were used to elucidate the effects of incorporating an organic functional group into the precursor chemistry and its subsequent affect on the structure and morphology of the resultant hybrid material. The annealing behavior of the resulting hybrid titanium base materials was also investigated. Our studies show that both amino acid organic ligands, AB and AS, chemically bounded to the titanium complex, effect the precursor reactivity, specifically the hydrolysis and polycondensation reactions, which control the evolution and formation of the nanohybrid-based titania material. Following sol–gel processing, the nanohybrid materials are amorphous, due to the incorporation of the organic component. The phase transition (amorphous–anatase–rutile) observed during annealing from 25° to 800°C show subtle differences in the crystallization behavior, which are associated with the nature of the organic ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号