首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  自动化技术   6篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
Gene Selection for Cancer Classification using Support Vector Machines   总被引:71,自引:0,他引:71  
DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues.In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer.In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.  相似文献
2.
3.
4.
This paper describes the data used in the ChaLearn gesture challenges that took place in 2011/2012, whose results were discussed at the CVPR 2012 and ICPR 2012 conferences. The task can be described as: user-dependent, small vocabulary, fixed camera, one-shot-learning. The data include 54,000 hand and arm gestures recorded with an RGB-D \(\hbox {Kinect}^\mathrm{TM}\) camera. The data are organized into batches of 100 gestures pertaining to a small gesture vocabulary of 8–12 gestures, recorded by the same user. Short continuous sequences of 1–5 randomly selected gestures are recorded. We provide man-made annotations (temporal segmentation into individual gestures, alignment of RGB and depth images, and body part location) and a library of function to preprocess and automatically annotate data. We also provide a subset of batches in which the user’s horizontal position is randomly shifted or scaled. We report on the results of the challenge and distribute sample code to facilitate developing new solutions. The data, datacollection software and the gesture vocabularies are downloadable from http://gesture.chalearn.org. We set up a forum for researchers working on these data http://groups.google.com/group/gesturechallenge.  相似文献
5.
This paper introduces principal motion components (PMC), a new method for one-shot gesture recognition. In the considered scenario a single training video is available for each gesture to be recognized, which limits the application of traditional techniques (e.g., HMMs). In PMC, a 2D map of motion energy is obtained per each pair of consecutive frames in a video. Motion maps associated to a video are processed to obtain a PCA model, which is used for recognition under a reconstruction-error approach. The main benefits of the proposed approach are its simplicity, easiness of implementation, competitive performance and efficiency. We report experimental results in one-shot gesture recognition using the ChaLearn Gesture Dataset; a benchmark comprising more than 50,000 gestures, recorded as both RGB and depth video with a Kinect™camera. Results obtained with PMC are competitive with alternative methods proposed for the same data set.  相似文献
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号