首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  自动化技术   11篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 218 毫秒
1.
基于Java的实时监控系统的设计与实现   总被引:4,自引:0,他引:4  
谭芳  李建华  冯刚 《计算机工程》2001,27(9):151-152,171
主要讨论了如何使用Java技术和实现实时监控系统,并给出了一个移动计费结算系统的监控子系统的实例。  相似文献
2.
Providing built-in keyword search capabilities in RDBMS   总被引:2,自引:0,他引:2  
A common approach to performing keyword search over relational databases is to find the minimum Steiner trees in database graphs transformed from relational data. These methods, however, are rather expensive as the minimum Steiner tree problem is known to be NP-hard. Further, these methods are independent of the underlying relational database management system (RDBMS), thus cannot benefit from the capabilities of the RDBMS. As an alternative, in this paper we propose a new concept called Compact Steiner Tree (CSTree), which can be used to approximate the Steiner tree problem for answering top-k keyword queries efficiently. We propose a novel structure-aware index, together with an effective ranking mechanism for fast, progressive and accurate retrieval of top-k highest ranked CSTrees. The proposed techniques can be implemented using a standard relational RDBMS to benefit from its indexing and query-processing capability. We have implemented our techniques in MYSQL, which can provide built-in keyword-search capabilities using SQL. The experimental results show a significant improvement in both search efficiency and result quality comparing to existing state-of-the-art approaches.  相似文献
3.
基于Matlab的摄像机标定系统的设计与实现   总被引:1,自引:0,他引:1  
考虑二阶径向畸变和切向畸变建立摄像机的非线性模型,在两步法的基础上,实现了单个摄像机标定和两摄像机间的立体标定,并在Matlab环境下进行编程实现,给出了标定系统的具体实现方法和流程。该系统使用方便、速度快、成本低,具有较高的标定精度。  相似文献
4.
A string similarity join finds similar pairs between two collections of strings. Many applications, e.g., data integration and cleaning, can significantly benefit from an efficient string-similarity-join algorithm. In this paper, we study string similarity joins with edit-distance constraints. Existing methods usually employ a filter-and-refine framework and suffer from the following limitations: (1) They are inefficient for the data sets with short strings (the average string length is not larger than 30); (2) They involve large indexes; (3) They are expensive to support dynamic update of data sets. To address these problems, we propose a novel method called trie-join, which can generate results efficiently with small indexes. We use a trie structure to index the strings and utilize the trie structure to efficiently find similar string pairs based on subtrie pruning. We devise efficient trie-join algorithms and pruning techniques to achieve high performance. Our method can be easily extended to support dynamic update of data sets efficiently. We conducted extensive experiments on four real data sets. Experimental results show that our algorithms outperform state-of-the-art methods by an order of magnitude on the data sets with short strings.  相似文献
5.
Conventional keyword search engines are restricted to a given data model and cannot easily adapt to unstructured, semi-structured or structured data. In this paper, we propose an efficient and adaptive keyword search method, called EASE, for indexing and querying large collections of heterogeneous data. To achieve high efficiency in processing keyword queries, we first model unstructured, semi-structured and structured data as graphs, and then summarize the graphs and construct graph indices instead of using traditional inverted indices. We propose an extended inverted index to facilitate keyword-based search, and present a novel ranking mechanism for enhancing search effectiveness. We have conducted an extensive experimental study using real datasets, and the results show that EASE achieves both high search efficiency and high accuracy, and outperforms the existing approaches significantly.  相似文献
6.
In this paper, we study the problem of keyword proximity search in XML documents. We take the disjunctive semantics among the keywords into consideration and find top-k relevant compact connected trees (CCTrees) as the answers of keyword proximity queries. We first introduce the notions of compact lowest common ancestor (CLCA) and maximal CLCA (MCLCA), and then propose compact connected trees and maximal CCTrees (MCCTrees) to efficiently and effectively answer keyword proximity queries. We give the theoretical upper bounds of the numbers of CLCAs, MCLCAs, CCTrees and MCCTrees, respectively. We devise an efficient algorithm to generate all MCCTrees, and propose a ranking mechanism to rank MCCTrees. Our extensive experimental study shows that our method achieves both high efficiency and effectiveness, and outperforms existing state-of-the-art approaches significantly.  相似文献
7.
Keyword search in XML documents has recently gained a lot of research attention. Given a keyword query, existing approaches first compute the lowest common ancestors (LCAs) or their variants of XML elements that contain the input keywords, and then identify the subtrees rooted at the LCAs as the answer. In this the paper we study how to use the rich structural relationships embedded in XML documents to facilitate the processing of keyword queries. We develop a novel method, called SAIL, to index such structural relationships for efficient XML keyword search. We propose the concept of minimal-cost trees to answer keyword queries and devise structure-aware indices to maintain the structural relationships for efficiently identifying the minimal-cost trees. For effectively and progressively identifying the top-k answers, we develop techniques using link-based relevance ranking and keyword-pair-based ranking. To reduce the index size, we incorporate a numbering scheme, namely schema-aware dewey code, into our structure-aware indices. Experimental results on real data sets show that our method outperforms state-of-the-art approaches significantly, in both answer quality and search efficiency.  相似文献
8.
Existing algorithms of mining frequent XML query patterns (XQPs) employ a candidate generate-and-test strategy. They involve expensive candidate enumeration and costly tree-containment checking. Further, most of existing methods compute the frequencies of candidate query patterns from scratch periodically by checking the entire transaction database, which consists of XQPs transferred from user query logs. However, it is not straightforward to maintain such discovered frequent patterns in real XML databases as there may be frequent updates that may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. Therefore, a drawback of existing methods is that they are rather inefficient for the evolution of transaction databases. To address above-mentioned problems, this paper proposes an efficient algorithm ESPRIT to mine frequent XQPs without costly tree-containment checking. ESPRIT transforms XML queries into sequences using a one-to-one mapping technique and mines the frequent sequences to generate frequent XQPs. We propose two efficient incremental algorithms, ESPRIT-i and ESPRIT-i +, to incrementally mine frequent XQPs. We devise several novel optimization techniques of query rewriting, cache lookup, and cache replacement to improve the answerability and the hit rate of caching. We have implemented our algorithms and conducted a set of experimental studies on various datasets. The experimental results demonstrate that our algorithms achieve high efficiency and scalability and outperform state-of-the-art methods significantly.  相似文献
9.
String similarity search and join are two important operations in data cleaning and integration, which extend traditional exact search and exact join operations in databases by tolerating the errors and inconsistencies in the data. They have many real-world applications, such as spell checking, duplicate detection, entity resolution, and webpage clustering. Although these two problems have been extensively studied in the recent decade, there is no thorough survey. In this paper, we present a comprehensive survey on string similarity search and join. We first give the problem definitions and introduce widely-used similarity functions to quantify the similarity. We then present an extensive set of algorithms for string similarity search and join. We also discuss their variants, including approximate entity extraction, type-ahead search, and approximate substring matching. Finally, we provide some open datasets and summarize some research challenges and open problems.  相似文献
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号