首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89504篇
  免费   9399篇
  国内免费   4926篇
电工技术   6750篇
技术理论   6篇
综合类   7611篇
化学工业   13235篇
金属工艺   5212篇
机械仪表   6072篇
建筑科学   7233篇
矿业工程   2777篇
能源动力   2407篇
轻工业   8103篇
水利工程   2182篇
石油天然气   4161篇
武器工业   989篇
无线电   10036篇
一般工业技术   9256篇
冶金工业   3567篇
原子能技术   1250篇
自动化技术   12982篇
  2024年   191篇
  2023年   1692篇
  2022年   3162篇
  2021年   4380篇
  2020年   3480篇
  2019年   2421篇
  2018年   2697篇
  2017年   3076篇
  2016年   2434篇
  2015年   3935篇
  2014年   5105篇
  2013年   6021篇
  2012年   6960篇
  2011年   7261篇
  2010年   6667篇
  2009年   6092篇
  2008年   6059篇
  2007年   5798篇
  2006年   5162篇
  2005年   4248篇
  2004年   2945篇
  2003年   2287篇
  2002年   2244篇
  2001年   1851篇
  2000年   1645篇
  1999年   1440篇
  1998年   867篇
  1997年   764篇
  1996年   678篇
  1995年   572篇
  1994年   435篇
  1993年   319篇
  1992年   241篇
  1991年   166篇
  1990年   125篇
  1989年   114篇
  1988年   80篇
  1987年   50篇
  1986年   38篇
  1985年   18篇
  1984年   15篇
  1983年   7篇
  1982年   7篇
  1981年   17篇
  1980年   26篇
  1979年   11篇
  1978年   2篇
  1977年   2篇
  1959年   9篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1H,15N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.  相似文献   
2.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
3.
Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.  相似文献   
4.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
5.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
6.
某大型安置房项目施工中,应用智能建造包含的综合管理平台技术、5G传输技术、无人塔式起重机智能安装技术、智能机器人和区块链技术,降低了安全风险,提高了安全管理水平.  相似文献   
7.
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.  相似文献   
8.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
9.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   
10.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号