首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
  国内免费   3篇
化学工业   16篇
金属工艺   11篇
机械仪表   1篇
矿业工程   1篇
能源动力   6篇
无线电   11篇
一般工业技术   19篇
冶金工业   9篇
自动化技术   22篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   11篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
2.
S. Wasiur-Rahman  M. Medraj   《Calphad》2009,33(3):584-598
A comprehensive thermodynamic database of the Al–Ca–Zn ternary system is presented for the first time. Critical assessment of the experimental data and re-optimization of the binary Al–Zn and Al–Ca systems have been performed. The optimized model parameters of the third binary system, Ca–Zn, are taken from the previous assessment of the Mg–Ca–Zn system by the same authors. All available as well as reliable experimental data both for the thermodynamic properties and phase boundaries are reproduced within experimental error limits. In the present assessment, the modified quasichemical model in the pair approximation is used for the liquid phase and Al_FCC phase of the Al–Zn system to account for the presence of the short-range ordering properly. Two ternary compounds reported by most of the research works are considered in the present calculation. The liquidus projections and vertical sections of the ternary systems are also calculated, and the invariant reaction points are predicted using the constructed database.  相似文献   
3.
能够提供更强计算能力的多核处理器将在安全关键系统中得到广泛应用.但是,由于现代处理器所使用的流水线、乱序执行、动态分支预测、Cache等性能提高机制以及多核之间的资源共享,使得系统的最坏执行时间分析变得非常困难.为此,国际学术界提出时间可预测系统设计的思想,以降低系统的最坏执行时间分析难度.已有研究主要关注硬件层次及其编译方法的调整和优化,而较少关注软件层次,即时间可预测多线程代码的构造方法以及到多核硬件平台的映射.本文提出一种基于同步语言模型驱动的时间可预测多线程代码生成方法,并对代码生成器的语义保持进行证明;提出一种基于AADL(Architecture Analysis and Design Language)的时间可预测多核体系结构模型,作为本文研究的目标平台;最后,给出多线程代码到多核体系结构模型的映射方法,并给出系统性质的分析框架.  相似文献   
4.
5.
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.  相似文献   
6.
7.
The effects of postweld heat treatment (PWHT) on 3.2-mm- and 5.1-mm-thick Ti-6Al-4V butt joints welded using a continuous wave (CW) 4-kW Nd:YAG laser welding machine were investigated in terms of microstructural transformations, welding defects, and hardness, as well as global and local tensile properties. Two postweld heat treatments, i.e., stress-relief annealing (SRA) and solution heat treatment followed by aging (STA), were performed and the weld qualities were compared with the as-welded condition. A digital image correlation technique was used to determine the global tensile behavior for the transverse welding samples. The local tensile properties including yield strength and maximum strain were determined, for the first time, for the laser-welded Ti-6Al-4V. The mechanical properties, including hardness and the global and local tensile properties, were correlated to the microstructure and defects in the as-welded, SRA, and STA conditions.  相似文献   
8.
F. Islam  M. Medraj   《Calphad》2005,29(4):289-302
The three binary systems Mg–Ni, Ca–Ni and Mg–Ca have been re-optimized. A self-consistent thermodynamic database of the Mg–Ni–Ca system is constructed by combining the optimized parameters of these three constituent binaries. Lattice stability values are not added to the pure elements Mg-hcp, Ni-fcc, Ca-fcc and Ca-bcc to construct this database. The Redlich–Kister polynomial model is used to describe the liquid and the terminal solid solution phases, and the sublattice model is used to describe the non-stoichiometric phase, in this system. The constructed database is used to calculate the three binary and the ternary systems. The calculated binary phase diagrams along with their thermodynamic properties such as Gibbs energy, enthalpy, entropy and activities are found to be in good agreement with experimental data from the literature. This is the first attempt to construct the ternary phase diagram of the Mg–Ni–Ca system. The established database for this system predicted three ternary eutectic, five ternary quasi-peritectic, two ternary peritectic and two saddle points.  相似文献   
9.
Whenever an intrusion occurs, the security and value of a computer system is compromised. Network-based attacks make it difficult for legitimate users to access various network services by purposely occupying or sabotaging network resources and services. This can be done by sending large amounts of network traffic, exploiting well-known faults in networking services, and by overloading network hosts. Intrusion Detection attempts to detect computer attacks by examining various data records observed in processes on the network and it is split into two groups, anomaly detection systems and misuse detection systems. Anomaly detection is an attempt to search for malicious behavior that deviates from established normal patterns. Misuse detection is used to identify intrusions that match known attack scenarios. Our interest here is in anomaly detection and our proposed method is a scalable solution for detecting network-based anomalies. We use Support Vector Machines (SVM) for classification. The SVM is one of the most successful classification algorithms in the data mining area, but its long training time limits its use. This paper presents a study for enhancing the training time of SVM, specifically when dealing with large data sets, using hierarchical clustering analysis. We use the Dynamically Growing Self-Organizing Tree (DGSOT) algorithm for clustering because it has proved to overcome the drawbacks of traditional hierarchical clustering algorithms (e.g., hierarchical agglomerative clustering). Clustering analysis helps find the boundary points, which are the most qualified data points to train SVM, between two classes. We present a new approach of combination of SVM and DGSOT, which starts with an initial training set and expands it gradually using the clustering structure produced by the DGSOT algorithm. We compare our approach with the Rocchio Bundling technique and random selection in terms of accuracy loss and training time gain using a single benchmark real data set. We show that our proposed variations contribute significantly in improving the training process of SVM with high generalization accuracy and outperform the Rocchio Bundling technique.  相似文献   
10.
Microstructural characterization of Mg-Al-Sr alloys   总被引:1,自引:0,他引:1  
The microstructural details of fourteen Mg-Al-Sr alloys were investigated in the as-cast form by a combination of scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis and quantitative electron probe microanalysis (EPMA). The heat transfer method coupled with the DSC measurement has been utilized to determine the solidification curves of the alloys. The morphology and the chemical composition of the phases were characterized. The microstructure of the alloys is primarily dominated by (Mg) and (Al4Sr). In the present investigation, ternary solid solubility of three binary compounds extended into the ternary system has been reported and denoted as: (Al4Sr), (Mg17Sr2) and (Mg38Sr9). The (Al4Sr) phase is a substitutional solid solution represented by MgxAl4−xSr and has a plate-like structure. The maximum solubility of Al in Mg17Sr2 was found to be 21.3 at%. It was also observed that Mg38Sr9 dissolved 12.5 at% Al.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号