首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1732篇
  免费   125篇
  国内免费   3篇
电工技术   19篇
化学工业   414篇
金属工艺   36篇
机械仪表   63篇
建筑科学   56篇
矿业工程   6篇
能源动力   135篇
轻工业   224篇
水利工程   11篇
石油天然气   16篇
无线电   147篇
一般工业技术   271篇
冶金工业   157篇
原子能技术   15篇
自动化技术   290篇
  2024年   2篇
  2023年   22篇
  2022年   29篇
  2021年   63篇
  2020年   48篇
  2019年   68篇
  2018年   61篇
  2017年   75篇
  2016年   70篇
  2015年   54篇
  2014年   87篇
  2013年   164篇
  2012年   124篇
  2011年   138篇
  2010年   127篇
  2009年   117篇
  2008年   101篇
  2007年   71篇
  2006年   70篇
  2005年   44篇
  2004年   36篇
  2003年   37篇
  2002年   31篇
  2001年   21篇
  2000年   13篇
  1999年   13篇
  1998年   36篇
  1997年   23篇
  1996年   14篇
  1995年   10篇
  1994年   14篇
  1993年   13篇
  1992年   11篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1860条查询结果,搜索用时 15 毫秒
1.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
2.
A novel series of cleavable alkyltrimethylammonium surfactants with different hydrocarbon chain lengths (C8–16) were synthesized. A carbonate break site inserted between the polar head and the hydrocarbon chain makes these compounds hydrolyzable. The reagents used are renewable, (bio)degradable, or reusable. The hydrolysis of these cleavable surfactants will lead to the generation of fatty alcohols and choline, which is an essential biological nutrient. The surface activities in aqueous solution of the synthesized carbonates fulfill the requirement of being good surfactants. In addition, the cleavable compounds containing n-decyl and n-dodecyl chains showed similar or higher antimicrobial activities when compared to a non-cleavable analog.  相似文献   
3.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
4.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
5.
The repair of bone fractures is a clinical challenge for patients with impaired healing, such as osteoporosis. Currently, different strategies have been developed to design new biomaterials, enhancing their interactions with biological systems and conducting the cellular behavior in the desired direction to help fracture healing. In the present work, hydroxyapatite-graphene oxide (HA-GO) nanocomposites were produced and the morphological and physicochemical influences of the addition of 0.5 wt%, 1.0 wt% and 1.5 wt% of GO to HA were observed. FEG-SEM and TEM analyses of HA-GO nanocomposites showed HA nanoparticles adhered to the surface of the GO sheets, suggesting an effective method to form nanostructured graphene-based biomaterials. As confirmation, physicochemical analyses by Raman, FTIR and TGA demonstrated a strong affinity between HA and GO, according to the increase of concentration from 0.5 wt% to 1.5 wt% GO in the HA-GO nanocomposites. Also, in order to evaluate the HA-GO nanocomposites behavior under biological microenvironment, in vitro bioactivity and indirect cytotoxicity tests were performed. FEG-SEM analyses confirmed the positive results for the bioactivity properties of HA-GO nanocomposite and indirect cytotoxicity demonstrated that even with a decrease in the hDPSCs viability and proliferation, when increasing to 1.5 wt% of GO concentration, high level of cell viability was exhibited by HA-GO nanocomposites. These biological results suggested the 0.5 wt% HA-GO nanocomposite as a potential bioactive bone graft and a promising biomaterial for bone tissue regeneration, when compared to the pure HA.  相似文献   
6.

This research aims to illustrate the potential use of concepts, techniques, and mining process tools to improve the systematic review process. Thus, a review was performed on two online databases (Scopus and ISI Web of Science) from 2012 to 2019. A total of 9649 studies were identified, which were analyzed using probabilistic topic modeling procedures within a machine learning approach. The Latent Dirichlet Allocation method, chosen for modeling, required the following stages: 1) data cleansing, and 2) data modeling into topics for coherence and perplexity analysis. All research was conducted according to the standards of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses in a fully computerized way. The computational literature review is an integral part of a broader literature review process. The results presented met three criteria: (1) literature review for a research area, (2) analysis and classification of journals, and (3) analysis and classification of academic and individual research teams. The contribution of the article is to demonstrate how the publication network is formed in this particular field of research, and how the content of abstracts can be automatically analyzed to provide a set of research topics for quick understanding and application in future projects.

  相似文献   
7.
8.
9.
Hydroxyapatite (HA) nanoparticles (NPs) doped with different radioisotopes for use as theranostic systems play an important role in scientific research nowadays due to their ability to simultaneously act in the treatment and diagnosis of various types of cancers. In this work, we describe the synthesis and characterization of a hydroxyapatite/tenorite nanocomposite functionalized with folic acid, representing a nanotheranostic material with potential for application as an agent in positron emission tomography imaging systems and to act specifically in the treatment and diagnosis of osteosarcoma. 64Cu and 32P were produced by nuclear activation in the TRIGA reactor at CDTN. The obtained samples were characterized by XRD with Rietveld refinement, XAFS, SEM, BET, TGA, FTIR, CHN, ICP-AES, XPS and gamma spectroscopy. We investigated how CuO grows in HA NPs, the stability of the interactions between CuO and HA constituents and the interactions between folic acid and the surface of the HA NPs. The results indicate the formation of a second phase (tenorite) besides hydroxyapatite, and that the interactions between the two phases are stable, resulting in a nanocomposite. Furthermore, the activation of 64Cu and 32P inside the HA matrix, through the exposition to a neutron flux, produces a theranostic material of interest for biological tests.  相似文献   
10.
Carbon dioxide (CO2) gas is the main contributor to climate change. CO2 storage in underground brines and oil‐field brines by mineral trapping has been considered as a promising alternative in order to reduce CO2 emissions. However, permanent storage of CO2 in stable carbonate minerals is greatly dependent on brine pH, being favored over an alkaline pH. The effect of alkaline additives (NaOH, KOH, CaO) and buffer solutions (NaHCO3/NaOH, Na2HPO4/NaOH, NH4Cl/NH4OH) on the mineral trapping of CO2 under mild conditions using a synthetic brine is investigated. The results indicate that both NaOH+NH4Cl/NH4OH and KOH+NH4Cl/NH4OH mixtures promote precipitation mainly of calcium carbonate (CaCO3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号