首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   8篇
电工技术   2篇
化学工业   13篇
机械仪表   4篇
建筑科学   1篇
能源动力   4篇
轻工业   1篇
水利工程   3篇
无线电   16篇
一般工业技术   23篇
冶金工业   39篇
原子能技术   10篇
自动化技术   25篇
  2021年   1篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   2篇
  2013年   10篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1998年   19篇
  1997年   9篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   5篇
  1978年   3篇
  1976年   3篇
  1974年   2篇
  1970年   1篇
  1963年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
1.
It is known that the average of many forecasts about a future event tends to outperform the individual assessments. With the goal of further improving forecast performance, this paper develops and compares a number of models for calibrating and aggregating forecasts that exploit the well-known fact that individuals exhibit systematic biases during judgment and elicitation. All of the models recalibrate judgments or mean judgments via a two-parameter calibration function, and differ in terms of whether (1) the calibration function is applied before or after the averaging, (2) averaging is done in probability or log-odds space, and (3) individual differences are captured via hierarchical modeling. Of the non-hierarchical models, the one that first recalibrates the individual judgments and then averages them in log-odds is the best relative to simple averaging, with 26.7 % improvement in Brier score and better performance on 86 % of the individual problems. The hierarchical version of this model does slightly better in terms of mean Brier score (28.2 %) and slightly worse in terms of individual problems (85 %).  相似文献   
2.
3.
The sequence selected from a sequence R(0)R(1)··· by a language L is the subsequence of R that contains exactly the bits R(n+1) such that the prefix R(0)··· R(n) is in L. By a result of Agafonoff, a sequence is normal if and only if any subsequence selected by a regular language is again normal. Kamae and Weiss and others have raised the question of how complex a language must be such that selecting according to the language does not preserve normality. We show that there are such languages that are only slightly more complicated than regular ones, namely, normality is preserved neither by deterministic one-counter languages nor by linear languages. In fact, for both types of languages it is possible to select a constant sequence from a normal one.  相似文献   
4.
Friction between crystalline bodies is described in a model that unifies elements of dislocation drag, contact mechanics, and interface theory. An analytic expression for the friction force between solids suggests that dislocation drag accounts for many of the observed phenomena related to solid–solid sliding. Included in this approach are strong arguments for agreement with friction dependence on temperature, velocity, orientation, and more general materials selection effects. It is shown that calculations of friction coefficients for sliding contacts are in good agreement with available experimental values reported from ultrahigh vacuum experiments. Extensions of this model include solutions for common types of dislocation barriers or defects. The effects of third-body solid lubricants, superplasticity, superconductivity, the Aubry transition, and supersonic dislocation motion are all discussed in the framework of dislocation-mediated friction.  相似文献   
5.
Electroconsolidation® is a process for densifying complex-shaped parts by using electrically conductive particulate solids as a pressure-transmitting medium. The part is immersed in a bed of the particulate medium contained in a die chamber. Sintering temperature is achieved by resistive heating of the medium while applying compaction pressure. The process is capable of ultrahigh temperatures and short cycle times and offers the potential for low processing costs.

Control of the process and selection of process conditions require knowledge of the temperatures within the die. Temperature gradients exist because of the high heating rate and because of variations of density and electrical resistivity of the medium due to the presence of the part. Direct measurement of temperature with thermocouples or other conventional means is impractical because of the high temperatures, high currents, and high pressures that are involved. Therefore, a computer model was developed to predict temperature as a function of time and applied voltage for any location in the die. The computer model is composed of three parts: a geometrical model to approximate the density and resistivity variations in the medium, a finite-element model to calculate the rate of resistive heating within each element, and a finite-difference model to calculate the temperature distribution based on solution of the heat-transfer equations. Predicted temperatures have been shown to be in excellent agreement with measurements, and numerical simulation provided encouraging consistency and reasonably accurate predictions of temperature profiles within the die. The model demonstrated the feasibility of a new process to achieve simultaneous application of pressure and heat to powder densification in Electroconsolidation.  相似文献   
6.
A set A is computably Lipschitz or cl-reducible, for short, to a set B if A is Turing reducible to B by an oracle Turing machine with use function ? such that ? is bounded by the identity function up to an additive constant, i.e., ?(n)??n+O(1). In this paper we study maximal pairs of computably enumerable (c.e.) cl-degrees or maximal pairs, for short, i.e., pairs of c.e. cl-degrees such that there is no c.e. cl-degree that is above both cl-degrees in this pair. Our main results are as follows. (1) A c.e. Turing degree contains a c.e. cl-degree that is half of a maximal pair if and only if this Turing degree contains a maximal pair if and only if this Turing degree is array noncomputable. (2) The cl-degrees of all weak truth-table complete sets are halves of maximal pairs while there is a Turing complete set A such that the cl-degree of A is not half of any maximal pair. In fact, any high c.e. Turing degree contains a c.e. cl-degree that is not half of a maximal pair. (3) Above any c.e. cl-degree there is a maximal pair. (4) There is a maximal pair which at the same time is a minimal pair. (5) There is a pair of c.e. cl-degrees that is not maximal and does not possess a least upper bound. Moreover, we make some observations on the structure of the c.e. cl-degrees in general. For instance, we give a very simple proof of the fact that there are no maximal c.e. cl-degrees.  相似文献   
7.
Three examples are revisited in which the reaction rate could be reliably correlated with point defect chemistry highlighting the role of point defects as acid–base active centers. In the case of dehydrohalogenation of tertiary butyl chloride, AgCl becomes increasingly active as heterogeneous catalyst, if AgCl is homogeneously or heterogeneously doped. By such a procedure the silver vacancy concentration is adequately increased. The oxygen incorporation into SrTiO3 offers an example in which the surface mechanism in terms of adsorbed species, oxygen vacancies and electronic centers has been elucidated. Appropriate surface coatings give rise to significant catalytic effects. Increasing iron (acceptor) doping not only changes the point defect chemistry but also the nature of the rate determining step. Lastly, the electrocatalytic function of Sr-doped LaMnO3 is considered as regards oxygen reduction reaction and O2− incorporation into Y-doped ZrO2 in the context of solid oxide fuel cells. Again the defect chemistry is of prime importance for the reaction rate.  相似文献   
8.
We synthesized three peptides, a D-polyarginyl peptide (r8(FITC)), a Tat peptide (Tat(FITC)), and a control peptide (Cp(FITC)) and attached each to amino-CLIO, a nanoparticle 30 nm in diameter. We then examined the effective permeability, Peff, of all six materials through CaCo-2 monolayers. The transport of peptide-nanoparticles was characterized by a lag phase (0-8 h) and a steady-state phase (9-27 h). The steady-state Peff values for peptides were in the order r8(FITC)>Tat(FITC)=Cp(FITC). When r8(FITC) and Tat(FITC) peptides were attached to the nanoparticle, they conferred their propensity to traverse cell monolayers onto the nanoparticle, whereas Cp(FITC) did not. Thus, when the r8(FITC) peptide was attached to the amino-CLIO nanoparticle, the resulting peptide-nanoparticle had a Peff similar to that of this poly-D-arginyl peptide alone. The Peff of r8(FITC)-CLIO (MW approximately 1000 kDa) was similar to that of mannitol (MW=182 Da), a poorly transported reference substance, with a far lower molecular weight. These results are the first to indicate that the modification of nanoparticles by attachment of membrane-translocating sequence-based peptides can alter nanoparticle transport through monolayers. This suggests that the surface modification of nanoparticles might be a general strategy for enhancing the permeability of drugs and that high-permeability nanoparticle-based therapeutics can be useful in selected pharmaceutical applications.  相似文献   
9.
The proton uptake of 18 compositions in the perovskite family (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ, perovskites, which are potential cathode materials for protonic ceramic fuel cells (PCFCs), is investigated by thermogravimetry. Hydration enthalpies and entropies are derived, and the doping trends are explored. The uptake is found to be largely determined by the basicity of the oxide ions. Partial substitution of Zn on the B‐site strongly enhances proton uptake, while Co substitution has the opposite effect. The proton concentration in Ba0.95La0.05Fe0.8Zn0.2O3‐δ is found to be 10% per formula unit at 250 °C, 5.5% at 400 °C, and 2.3% at 500 °C, which are the highest values reported so far for a mixed‐conducting perovskite exhibiting hole, proton, and oxygen vacancy transport. A comprehensive set of thermodynamic data for proton uptake in (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ is determined. Defect interactions between protons and holes partially delocalized from the B‐site transition metal to the adjacent oxide ions decrease the proton uptake. From these results, guidelines for the optimization of PCFC cathode materials are derived.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号