首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  自动化技术   10篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1994年   2篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Machine Learning for User Modeling   总被引:24,自引:0,他引:24  
At first blush, user modeling appears to be a prime candidate for straightforward application of standard machine learning techniques. Observations of the user's behavior can provide training examples that a machine learning system can use to form a model designed to predict future actions. However, user modeling poses a number of challenges for machine learning that have hindered its application in user modeling, including: the need for large data sets; the need for labeled data; concept drift; and computational complexity. This paper examines each of these issues and reviews approaches to resolving them.  相似文献
2.
A Framework for Collaborative, Content-Based and Demographic Filtering   总被引:23,自引:0,他引:23  
We discuss learning a profile of user interests for recommending information sources such as Web pages or news articles. We describe the types of information available to determine whether to recommend a particular page to a particular user. This information includes the content of the page, the ratings of the user on other pages and the contents of these pages, the ratings given to that page by other users and the ratings of these other users on other pages and demographic information about users. We describe how each type of information may be used individually and then discuss an approach to combining recommendations from multiple sources. We illustrate each approach and the combined approach in the context of recommending restaurants.  相似文献
3.
User Modeling for Adaptive News Access   总被引:9,自引:0,他引:9  
We present a framework for adaptive news access, based on machine learning techniques specifically designed for this task. First, we focus on the system's general functionality and system architecture. We then describe the interface and design of two deployed news agents that are part of the described architecture. While the first agent provides personalized news through a web-based interface, the second system is geared towards wireless information devices such as PDAs (personal digital assistants) and cell phones. Based on implicit and explicit user feedback, our agents use a machine learning algorithm to induce individual user models. Motivated by general shortcomings of other user modeling systems for Information Retrieval applications, as well as the specific requirements of news classification, we propose the induction of hybrid user models that consist of separate models for short-term and long-term interests. Furthermore, we illustrate how the described algorithm can be used to address an important issue that has thus far received little attention in the Information Retrieval community: a user's information need changes as a direct result of interaction with information. We empirically evaluate the system's performance based on data collected from regular system users. The goal of the evaluation is not only to understand the performance contributions of the algorithm's individual components, but also to assess the overall utility of the proposed user modeling techniques from a user perspective. Our results provide empirical evidence for the utility of the hybrid user model, and suggest that effective personalization can be achieved without requiring any extra effort from the user.  相似文献
4.
A Principal Components Approach to Combining Regression Estimates   总被引:8,自引:0,他引:8  
The goal of combining the predictions of multiple learned models is to form an improved estimator. A combining strategy must be able to robustly handle the inherent correlation, or multicollinearity, of the learned models while identifying the unique contributions of each. A progression of existing approaches and their limitations with respect to these two issues are discussed. A new approach, PCR*, based on principal components regression is proposed to address these limitations. An evaluation of the new approach on a collection of domains reveals that (1) PCR* was the most robust combining method, (2) correlation could be handled without eliminating any of the learned models, and (3) the principal components of the learned models provided a continuum of regularized weights from which PCR* could choose.  相似文献
5.
Adaptive Web Site Agents   总被引:4,自引:0,他引:4  
We discuss the design and evaluation of a class of agents that we call adaptive web site agents. The goal of such an agent is to help a user find additional information at a particular web site, adapting its behavior in response to the actions of the individual user and the actions of other visitors to the web site. The agent recommends related documents to visitors and we show that these recommendations result in increased information read at the site. It integrates and coordinates among different reasons for making recommendations including user preference for subject area, similarity between documents, frequency of citation, frequency of access, and patterns of access by visitors to the web site. We argue that this information is best used not to change the structure or content of the web site but rather to change the behavior of an animated agent that assists the user.  相似文献
6.
Detecting Group Differences: Mining Contrast Sets   总被引:1,自引:0,他引:1  
A fundamental task in data analysis is understanding the differences between several contrasting groups. These groups can represent different classes of objects, such as male or female students, or the same group over time, e.g. freshman students in 1993 through 1998. We present the problem of mining contrast sets: conjunctions of attributes and values that differ meaningfully in their distribution across groups. We provide a search algorithm for mining contrast sets with pruning rules that drastically reduce the computational complexity. Once the contrast sets are found, we post-process the results to present a subset that are surprising to the user given what we have already shown. We explicitly control the probability of Type I error (false positives) and guarantee a maximum error rate for the entire analysis by using Bonferroni corrections.  相似文献
7.
We introduce a new bias for rule learning systems. The bias only allows a rule learner to create a rule that predicts class membership if each test of the rule in isolation is predictive of that class. Although the primary motivation for the bias is to improve the understandability of rules, we show that it also improves the accuracy of learned models on a number of problems. We also introduce a related preference bias that allows creating rules that violate this restriction if they are statistically significantly better than alternative rules without such violations. Michael J. Pazzani, Ph.D.: He is a Full Professor and Chair in the Department of Information and Computer Science at the University of California, Irvine. He obtained his bachelors degree from the University of Connecticut in 1980 and his Ph. D. from University of California, Los Angles in 1987. His research interests are in machine learning, cognitive modeling and information access. He has published over 100 research papers and 2 books. He has served on the Editorial Board of the Machine Learning and the Journal of Artificial Intelligence Research.  相似文献
8.
9.
10.
We present an approach to modeling the average case behavior of learning algorithms. Our motivation is to predict the expected accuracy of learning algorithms as a function of the number of training examples. We apply this framework to a purely empirical learning algorithm, (the one-sided algorithm for pure conjunctive concepts), and to an algorithm that combines empirical and explanation-based learning. The model is used to gain insight into the behavior of these algorithms on a series of problems. Finally, we evaluate how well the average case model performs when the training examples violate the assumptions of the model.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号