首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72185篇
  免费   7476篇
  国内免费   4395篇
电工技术   5754篇
技术理论   1篇
综合类   5738篇
化学工业   10707篇
金属工艺   4198篇
机械仪表   4898篇
建筑科学   5842篇
矿业工程   2111篇
能源动力   2260篇
轻工业   4910篇
水利工程   1548篇
石油天然气   3216篇
武器工业   975篇
无线电   8818篇
一般工业技术   8104篇
冶金工业   2765篇
原子能技术   1037篇
自动化技术   11174篇
  2024年   161篇
  2023年   1068篇
  2022年   1874篇
  2021年   2931篇
  2020年   2345篇
  2019年   1871篇
  2018年   2013篇
  2017年   2378篇
  2016年   2145篇
  2015年   3130篇
  2014年   3770篇
  2013年   4676篇
  2012年   5052篇
  2011年   5441篇
  2010年   5047篇
  2009年   4885篇
  2008年   4716篇
  2007年   4453篇
  2006年   4224篇
  2005年   3639篇
  2004年   2640篇
  2003年   2365篇
  2002年   2339篇
  2001年   2054篇
  2000年   1609篇
  1999年   1358篇
  1998年   1035篇
  1997年   812篇
  1996年   830篇
  1995年   678篇
  1994年   548篇
  1993年   446篇
  1992年   356篇
  1991年   255篇
  1990年   210篇
  1989年   157篇
  1988年   146篇
  1987年   88篇
  1986年   73篇
  1985年   54篇
  1984年   37篇
  1983年   22篇
  1982年   26篇
  1981年   22篇
  1980年   16篇
  1979年   13篇
  1978年   6篇
  1976年   8篇
  1959年   8篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
2.
蒋宇佳  于晓强  包明 《精细化工》2021,38(10):2150-2153,2160
二酯类化合物广泛应用于有机中间体、药物、增塑剂、香料等领域,开发其绿色、高效的合成新方法具有重要意义.报道了以二元羧酸(或二羧酸酐)和脂肪醇为原料,以深共融溶剂(DESs)为催化剂催化合成二酯类化合物.以n(氯化胆碱):n(对甲苯磺酸)=1:2为催化剂,产率最高可达95%,并且DESs使用8次后产率仍保持在88%以上.运用1HNMR和13CNMR对产物进行了结构表征.该方法具有操作简单、产率高、易分离和催化剂可循环使用等优点.  相似文献   
3.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
4.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
5.
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from-0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.  相似文献   
6.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
7.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
8.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
9.
Developing non-platinum group metal (non-PGM) electrocatalysts for the hydrogen oxidation reaction (HOR) represents the efforts towards the more economical use of hydrogen fuel cells and hydrogen energy, which has attracted tremendous attention recently. However, non-PGM electrocatalysts for the HOR are still in their early development stages as compared with the significant advances in those for the oxygen reduction reaction and hydrogen evolution reaction. Herein, this paper summarizes the recent progresses and highlights the key challenges for the rational design of non-PGM electrocatalysts, aiming to promote the development of non-PGM HOR electrocatalysts. Fundamental understandings of the HOR mechanism are firstly reviewed, where theoretical interpretations on the low HOR kinetics in alkaline media, including the hydrogen binding energy theory, the bifunctional mechanism, and the water molecule reorganization, are particularly discussed. Subsequently, progresses of typical non-PGM HOR electrocatalysts in acid and alkaline media are summarized separately. For the HOR under alkaline conditions, the superiorities and challenges of Ni-based catalysts are discussed with a particular focus as they are the most promising non-PGM electrocatalysts. Finally, this paper highlights the challenges and provide perspectives on the future development directions of non-PGM HOR electrocatalysts.  相似文献   
10.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号