首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
电工技术   1篇
化学工业   16篇
金属工艺   1篇
建筑科学   2篇
能源动力   5篇
轻工业   8篇
无线电   9篇
一般工业技术   13篇
冶金工业   1篇
自动化技术   15篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2007年   2篇
  2006年   2篇
  2003年   2篇
  1991年   1篇
排序方式: 共有71条查询结果,搜索用时 78 毫秒
1.
Journal of Materials Science: Materials in Electronics - Single lead-free Na0.73Bi0.09(Nb1???xTax)O3 (x?=?0, 0.10, 0.20, 0.30, and 0.40) ceramic phases were processed...  相似文献   
2.
The case-based learning (CBL) approach has gained attention in medical education as an alternative to traditional learning methodology. However, current CBL systems do not facilitate and provide computer-based domain knowledge to medical students for solving real-world clinical cases during CBL practice. To automate CBL, clinical documents are beneficial for constructing domain knowledge. In the literature, most systems and methodologies require a knowledge engineer to construct machine-readable knowledge. Keeping in view these facts, we present a knowledge construction methodology (KCM-CD) to construct domain knowledge ontology (i.e., structured declarative knowledge) from unstructured text in a systematic way using artificial intelligence techniques, with minimum intervention from a knowledge engineer. To utilize the strength of humans and computers, and to realize the KCM-CD methodology, an interactive case-based learning system(iCBLS) was developed. Finally, the developed ontological model was evaluated to evaluate the quality of domain knowledge in terms of coherence measure. The results showed that the overall domain model has positive coherence values, indicating that all words in each branch of the domain ontology are correlated with each other and the quality of the developed model is acceptable.  相似文献   
3.
Experimental results of two-phase pressure drop in a horizontal circular microchannel are reported in this paper. A test tube was made of fused silica having an internal diameter of 781 μm with a total length of 261 mm and a heated length of 191 mm. The outer surface of the test tube was coated with an electrically conductive thin layer of ITO (indium tin oxide) for direct heating of the test section. Refrigerants R134a and R245fa were used as the working fluids, and mass flux during the experiments was varied between 100 and 650 kg/m2-s. Experiments were performed at two different system pressures corresponding to saturation temperatures of 25°C and 30°C for R134a and at three different system pressures corresponding to saturation temperatures of 30°C, 35°C, and 40°C for R245fa. Two-phase frictional pressure drop characteristics with variation of mass flux, vapor fraction, saturation temperature, and heat flux were explored in detail. Finally, the prediction capability of some well-known correlations available in the literature, some developed for macrochannels and others especially developed for microchannels, was assessed.  相似文献   
4.
The popping process was optimized for brown rice based on an expansion ratio. A central composite design with interactive effect of three independent variables, including salt content (1–2.5 g/100 g raw material), moisture content (13–17 g/100 g raw material), and popping temperature (210–240°C) was used to study their effects on the expansion ratio of rice using response surface methodology. The experimental values of expansion ratio were ranged from 5.24 to 6.85. On fitting the experimental values of expansion ratio to a second order polynomial equation, a mathematical model with the predictability was developed with the statistical adequacy and validity (p ? 0.05). From the model, the optimal condition including salt content (1.75 g/100 g raw material), moisture content (15 g/100 g raw material), and popping temperature (225°C) were predicted for a maximum expansion ratio of 6.79, which was then proved to be 6.85 through experiment. Raw and popped brown rice were investigated for physical properties including hardness, L*, a*, and b* value, length/breadth ratio, bulk density, and minerals, which showed the significant differences. The optimized popped rice sample was evaluated for structural, spectroscopic, and thermal properties, which showed the significant difference from raw rice.  相似文献   
5.
Three novel heteroleptic amphiphilic polypyridyl Ru‐complexes, coded MH08–10 , with hetero‐aromatic electron‐donor ancillary ligands containing N‐benzylcarbazole ( MH08 ), dibenzofurane ( MH09 ) and benzothiophene moieties ( MH10 ) were synthesized to study the influence of different heterocyclic electron donors on the interrelationship of photophysical and electrochemical properties, and device performances for dye‐sensitized solar cells (DSSCs). MH08 showed a remarkably high molar extinction coefficient of 27,650 M−1cm−1. MH08–TBA was synthesized from MH08 by converted one COOH group into −COO−+N(C4H9)4 to investigate the effect of deprotonating one carboxylic group on the Fermi level and electron injection. When compared under the same experimental device conditions using 0.3M t‐butylpyridine (TBP), the short‐circuit photocurrent density (JSC) and total conversion efficiency (%η) of MH08–10 were MH08 > MH09 > MH10 . The differences in %η and JSC of MH08–10 were ascribed to the conjugation length coupled with the electron donation and hole‐transport strength of the ancillary ligands, which were in the following order N‐benzylcarbazole>dibenzofurane>benzothiophene. Moreover, MH08–TBA showed JSC of 19.56 mAcm−2 and %η of 9.76% compared to 17.16 mAcm−2 and 9.12% of the benchmark dye N719 . The superior performance of MH08–TBA was attributed to its better light harvesting and enhanced incident‐photon‐to‐current efficiency (IPCE) conversion. DFT/TD‐DFT calculations utilizing the energy functional B3LYP and the full‐electron basis set DGDZVP were performed to calculate HOMO and LUMO energies, vertical electronic excitations, lowest singlet‐singlet electronic transitions (E0‐0), and excited state oxidation potentials. Excellent agreement was found between the experimental results and calculated data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Thin films of Praseodymium doped AlN are deposited on silicon (111) substrates at 77 K and 950 K by rf magnetron sputtering method. About 500–1000 nm thick films are grown at 100–200 watts RF power and 5–8 mTorr nitrogen, using a metal target of Al with Pr. X-rays diffraction results show that films deposited at 77 K are amorphous and those deposited at 950 K are crystalline. Cathodoluminescence studies are performed at room temperature and luminescence peaks are observed in a wide range from ultraviolet to infrared region. The most intense peak is obtained in green at 526 nm from amorphous films as a result from 3P13H5 transition. In crystalline films the intense peak was obtain in red at 648 nm as a result from 3P03F2 transition. Films are thermally activated at 1300 K for half an hour in a nitrogen atmosphere. Thermal activation enhances the intensity of luminescence. Two peaks at 488 nm and 505 nm merged after thermal activation, giving rise to a single peak at 495 nm.  相似文献   
7.
ABSTRACT

Knowledge-based engineering systems are founded upon integration of knowledge into computer systems and are one of the core requirements for the future Industry 4.0. This paper presents a system called smart innovation engineering (SIE) capable of facilitating product innovation process semi-automatically. It enhances decision-making processes using the explicit knowledge of formal decision events. The SIE system carries the promise to support the innovation processes of manufactured products in a quick and efficient way. It stores and reuses past decisional events or sets of experiences related to innovation issues, which significantly enhances innovation progression. The analysis of basic concepts and implementation method proves that SIE system is an advanced form of cyber physical systems. It is flexible, systematic, fast, and supports customization. It can play a vital role toward Industry 4.0 development.  相似文献   
8.
There is an extensive possibility of improving characteristics of fibers used in hard tissue engineering, being hydrophobic and less osteoconductive, resulting in the dynamic growth of new tissues. The current work focuses on the fabrication of nanofibers incorporated with titanium dioxide (TiO2) ''as osteoconductive'' and silver (Ag) ''as self-healing'' nanoparticles (NPs). The incorporation of AgNO3 by in situ method not only helped to impart the antibacterial activity but also changed the contact angle from 81 ± 03° in the case of pristine nanofibers to 74 ± 03°, 61 ± 03°, 50 ± 08°, and 39 ± 1.1°, in the composite scaffolds containing 0.01, 0.03, 0.05, and 0.07 M of Ag salts. The incubation in simulated body fluid at 37°C to induce mineralization on nanofiber scaffolds indicated Ca and P crystals' formation. The antibacterial activity showed significantly more toxicity toward E. coli (8.3 ± 0.9 mm) than S. aureus (1.2 ± 0.1 mm). Biocompatibility studies using MTT assay on the pre-osteoblasts showed that both TiO2 and Ag NPs present in the nanofibers are non-toxic to the bone-like cells. However, results show that a higher concentration of Ag NPs (i.e., 0.07 M) is toxic to cells growing. Finally, all the results suggest that the nanofiber scaffolds have considerable scope for future bone tissue engineering materials.  相似文献   
9.
Semiconductors - Thin films of AlN:Tm are deposited on a Si(111) and Si(100) substrates and optical fiber by rf magnetron sputtering method. 200–400 nm thick films are deposited at various...  相似文献   
10.
Samarium (Sm) doped aluminum nitride (AlN) thin films are deposited on silicon (100) substrates at 77 K by rf magnetron sputtering method. Thick films of 200 nm are grown at 100–200 watts RF power and 5–8 m Torr nitrogen, using a metal target of Al with Sm. X-ray diffraction results show that films are amorphous. Cathodoluminescence (CL) studies are performed and four peaks are observed in Sm at 564, 600, 648, and 707 nm as a result of 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2, and 4G5/2 → 6H11/2 transitions. Photoluminescence (PL) provides dominant peaks at 600 and 707 nm while CL gives the intense peaks at 600 nm and 648 nm, respectively. Films are thermally activated at 1,200 K for half an hour in a nitrogen atmosphere. Thermal activation enhances the intensity of luminescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号