首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178528篇
  免费   17046篇
  国内免费   8183篇
电工技术   12400篇
技术理论   15篇
综合类   12472篇
化学工业   28679篇
金属工艺   10269篇
机械仪表   11377篇
建筑科学   14754篇
矿业工程   5582篇
能源动力   5386篇
轻工业   11522篇
水利工程   3650篇
石油天然气   10240篇
武器工业   1645篇
无线电   20637篇
一般工业技术   20669篇
冶金工业   7902篇
原子能技术   2148篇
自动化技术   24410篇
  2024年   391篇
  2023年   2992篇
  2022年   5304篇
  2021年   7851篇
  2020年   6102篇
  2019年   4907篇
  2018年   5477篇
  2017年   6160篇
  2016年   5391篇
  2015年   7722篇
  2014年   9407篇
  2013年   11144篇
  2012年   12416篇
  2011年   13278篇
  2010年   11473篇
  2009年   10857篇
  2008年   10513篇
  2007年   9787篇
  2006年   9802篇
  2005年   8378篇
  2004年   5688篇
  2003年   4687篇
  2002年   4326篇
  2001年   3793篇
  2000年   3854篇
  1999年   3963篇
  1998年   3284篇
  1997年   2765篇
  1996年   2611篇
  1995年   2183篇
  1994年   1777篇
  1993年   1269篇
  1992年   1037篇
  1991年   770篇
  1990年   585篇
  1989年   501篇
  1988年   414篇
  1987年   271篇
  1986年   176篇
  1985年   113篇
  1984年   66篇
  1983年   49篇
  1982年   73篇
  1981年   46篇
  1980年   40篇
  1979年   17篇
  1976年   9篇
  1965年   4篇
  1959年   13篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
电磁超声换能器一般采用具有超强磁力的稀土永磁制作,在实际检测中由于磁力不可控,存在偏置磁场不够强导致换能效率过低和磁力过强造成操作不方便等问题.提出一种偏置磁场磁力可控的电磁超声换能器,采用电磁铁与永磁铁相结合的方式,达到偏置磁场磁力可控的目的.通过有限元仿真和试验得出,提出的偏置磁场磁力可控的电磁超声换能器,在电磁铁处于关闭模式下,永磁铁能够提供基础磁场;采用增强模式或减弱模式,无被测物时,换能器下表面平均垂直磁通最大分别增强78.58%和减弱19.36%,而提离2 mm检测钢板时,换能器下方钢板表面平均垂直磁通最大分别增强52.99%和减弱38.02%;得出3种模式下,探头磁力随着提离距离缩小而增强的试验曲线;通过增强模式对铝板和钢板进行测厚试验,将检测信号幅值分别提高46.91%和62.01%.所设计的磁力可控电磁超声换能器不仅具有磁力可控的功能,还能够提高检测信号幅值.  相似文献   
2.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
3.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
4.
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.  相似文献   
5.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
6.
A numerical model is developed for surface crack propagation in brittle ceramic coatings, aiming at the intrinsic failure of rare-earth silicate environmental barrier coating systems (EBCs) under combustion conditions in advanced gas turbines. The main features of progressive degradation of EBCs in such conditions are captured, including selective silica vaporization in the top coat due to exposure to water vapor, diffusion path-dependent bond coat oxidation, as well as crack propagation during cyclic thermal loading. In light of these features, user-defined subroutines are implemented in finite element analysis, where surface crack growth is simulated by node separation. Numerical results are validated by existing experimental data, in terms of monosilicate layer thickening, thermal oxide growth, and fracture behaviors. The experimentally observed quasi-linear oxidation in the early stage is also elucidated. Furthermore, it is suggested that surface crack undergoes rapid propagation in the late stage of extended thermal cycling in water vapor and leads to catastrophic failure, driven by both thermal mismatch and oxide growth stresses. The latter is identified as the dominant mechanism of penetration. Based on detailed analyses of failure mechanisms, the optimization strategy of EBCs composition is proposed, balancing the trade-off between mechanical compliance and erosion resistance.  相似文献   
7.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   
8.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
9.
Succinic acid is an important synthetic monomer but it is difficult to use it as a precursor for synthesizing high molecular weight polyamide, due to its tendency to perform intra-cyclization reaction at high temperature. In order to solve this problem, in this paper, the direct solid-state polymerization (DSSP) method with the initial reactant, nylon salt which was composed of 1, 5-diaminopentane, succinic acid, and terephthalic acid, was applied to synthesize the bio-based copolyamide PA 5T/54. In comparison with the conventional melting polymerization method, the DSSP method can prevent the cyclization reaction of succinic acid effectively due to the lower reacting temperature as well as the restriction effect of the nylon salt. As a result, the product fabricated by DSSP method has higher molecular weight and much lighter color from red to white. Therefore, the DSSP method is advantageous for the synthesis of the polymers or copolymers composed of the succinic acid as the monomer. Furthermore, the polymerization mechanism proposed in this work can serve as a guidance for the design of the molecular structure and control of the polymerization process.  相似文献   
10.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号