首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   1篇
  国内免费   1篇
电工技术   3篇
化学工业   30篇
金属工艺   9篇
机械仪表   6篇
能源动力   6篇
轻工业   6篇
无线电   9篇
一般工业技术   41篇
冶金工业   11篇
原子能技术   1篇
自动化技术   17篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   10篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1985年   1篇
  1983年   1篇
  1971年   1篇
排序方式: 共有139条查询结果,搜索用时 149 毫秒
1.
2.
This study is novel to report the utilization of molasses for the production of polyhydroxy propionate-co-hydroxy dodecanoate-co-hydroxy octadecanoate from Pseudomonas sp. LDC-5 as prospective biomaterial. Thermal analysis revealed its potential for thermal permanence and melt processing. 3T3 fibroblasts were cultured on these different scaffolds and their proliferation was compared. Giemsa and acridine orange/ethidium bromide staining revealed that there was no distinct change in morphology. Polyhydroxyalkanoate:poly ethylene glycol blend was found to be the most promising for extracellular matrix secretion, a key thrust function of 3D culture. Lactate dehydrogenase assay indicated the membrane integrity. DNA fragmentation analysis showed that the scaffold did not damage DNA. Thus the prepared scaffold can serve as a promising biomaterial.  相似文献   
3.
4.
The present article discusses the experimental results on cooling characteristics of a stationary hot steel plate by spray impingement. The experimental setup consisted of an electrically heated flat stationary steel plate of dimension 120 mm × 120 mm × 4 mm, spray setup, water supply, and air supply unit. The effects of various controlling parameters such as air-water pressures, water flow rate, nozzle tip to target distance and impingement density were determined and analyzed. The cooling rates were computed from the time-dependent temperature history and used to analyze the parametric effects. The results obtained in the study confirmed the higher efficiency of the spray cooling system and the cooling strategy was found advantageous over the conventional cooling methods available in the open literature.  相似文献   
5.
Pioneering research suggests various modes of cellular therapeutics and biomaterial strategies for myocardial tissue engineering. Despite several advantages, such as safety and improved function, the dynamic myocardial microenvironment prevents peripherally or locally administered therapeutic cells from homing and integrating of biomaterial constructs with the infarcted heart. The myocardial microenvironment is highly sensitive due to the nanoscale cues that it exerts to control bioactivities, such as cell migration, proliferation, differentiation, and angiogenesis. Nanoscale control of cardiac function has not been extensively analyzed in the field of myocardial tissue engineering. Inspired by microscopic analysis of the ventricular organization in native tissue, a scalable in‐vitro model of nanoscale poly(L ‐lactic acid)‐co ‐poly(? ‐caprolactone)/collagen biocomposite scaffold is fabricated, with nanofibers in the order of 594 ± 56 nm to mimic the native myocardial environment for freshly isolated cardiomyocytes from rabbit heart, and the specifically underlying extracellular matrix architecture: this is done to address the specificity of the underlying matrix in overcoming challenges faced by cellular therapeutics. Guided by nanoscale mechanical cues provided by the underlying random nanofibrous scaffold, the tissue constructs display anisotropic rearrangement of cells, characteristic of the native cardiac tissue. Surprisingly, cell morphology, growth, and expression of an interactive healthy cardiac cell population are exquisitely sensitive to differences in the composition of nanoscale scaffolds. It is shown that suitable cell–material interactions on the nanoscale can stipulate organization on the tissue level and yield novel insights into cell therapeutic science, while providing materials for tissue regeneration.  相似文献   
6.
Novel near white light emitting Y2CaZnO5 (YCZ) nanocrystalline powders doped with Dy3+ ions were synthesized via the citrate gel combustion method. The structure of the compound is found to be triclinic with a particle size in the range of 20–30 nm. Luminescence properties have been characterized using photoluminescence (PL), excitation spectra and decay time measurements. The PL spectra have shown a broad blue band due to 4F9/26H15/2 transition and sharp yellow band corresponding to 4F9/26H13/2 transition of Dy3+ ions. From the concentration dependent PL studies, the optimum concentration of Dy3+ ions in YCZ is found to be 1.0 mol%, where intense near white light emission was observed. The Dy3+:YCZ nanophosphor has shown relatively better white color properties than the reported Dy3+:Y2O3 nanophosphor. The yellow to blue intensity ratios, CIE chromaticity coordinates and correlated color temperature studies have shown the possibility of using this compound for white light emission.  相似文献   
7.
This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.  相似文献   
8.
Every year, millions of people suffer from dermal wounds caused by heat, fire, chemicals, electricity, ultraviolet radiation or disease. Tissue engineering and nanotechnology have enabled the engineering of nanostructured materials to meet the current challenges in skin treatments owing to such rising occurrences of accidental damages, skin diseases and defects. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for skin regeneration. The nanofibrous PVA/gelatin/azide scaffolds were then fabricated by electrospinning using water as solvent and allowed to undergo click reaction. The scaffolds were characterized by SEM, contact angle and FTIR. The cell–scaffold interactions were analyzed by cell proliferation and the results observed that the rate of cell proliferation was significantly increased (P ≤ 0.05) on PVA/gelatin/azide scaffolds compared to PVA/gelatin nanofibers. In the present study, manipulating the biochemical cues by the addition of an induction medium, in combination with environmental and physical factors of the culture substrate by functionalizing with click moieties, we were able to drive ADSCs into epidermal lineage with the development of epidermis-like structures, was further confirmed by the expression of early and intermediate epidermal differentiation markers like keratin and filaggrin. This study not only provides an insight into the design of a site-specific niche-like microenvironment for stem cell lineage commitment, but also sheds light on the therapeutic application of an alternative cell source—ADSCs, for wound healing and skin tissue reconstitution.  相似文献   
9.
Two usual criteria of goodness of pulse compression sequences are the discrimination and the merit factor. Using the notion of equivalence of l/sub p/ norms, they are related by an inequality. Using bounds on the aperiodic autocorrelation, the inequality is strengthened further to obtain a bound on the merit factor in terms of the length of the sequence and the Barker progression number.<>  相似文献   
10.
With increasing interest in energy storage and conversion devices for automobile applications, the necessity to understand and predict life behavior of rechargeable batteries, PEM fuel cells and super capacitors is paramount. These electrochemical devices are most beneficial when used in hybrid configurations rather than as individual components. A system model helps us to understand the interactions between components and enables us to determine the response of the system as a whole. However, system models that are available predict just the performance and neglect degradation. The objective of this research is to provide a framework to account for the durability phenomena that are prevalent in fuel cells and batteries in a hybrid system. Toward this end, the methodology for development of surrogate models is provided, and Pt catalyst dissolution in proton exchange membrane fuel cells (PEMFCs) is used as an example to demonstrate the approach. Surrogate models are more easily integrated into higher level system models than the detailed physics-based models. As an illustration, the effects of changes in control strategies and power management approaches in mitigating platinum instability in fuel cells are reported. A system model that includes a fuel cell stack, a storage battery, power-sharing algorithm, and dc/dc converter has been developed; and preliminary results have been presented. These results show that platinum stability can be improved with only a small impact on system efficiency. Thus, this research will elucidate the importance of degradation issues in system design and optimization as opposed to just initial performance metrics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号