首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   13篇
电工技术   8篇
化学工业   43篇
金属工艺   4篇
机械仪表   19篇
建筑科学   3篇
能源动力   18篇
轻工业   23篇
水利工程   1篇
无线电   48篇
一般工业技术   60篇
冶金工业   13篇
原子能技术   4篇
自动化技术   37篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   21篇
  2019年   18篇
  2018年   14篇
  2017年   15篇
  2016年   17篇
  2015年   13篇
  2014年   20篇
  2013年   28篇
  2012年   13篇
  2011年   19篇
  2010年   11篇
  2009年   13篇
  2008年   14篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1981年   1篇
排序方式: 共有281条查询结果,搜索用时 17 毫秒
1.
Femtosecond pulses from a Ti:Sapphire laser were used to irradiate specimens of yttria-stabilised (35% mol) tetragonal zirconia (Y-TZP) with the purpose of studying the effects of the irradiations on their surface properties and morphology after ageing. Zirconia disks were divided into eight groups (n = 32) according to their surface treatment and subsequent ageing: Control: no treatment; sandblasting: Al2O3 sandblasting 50 μm; and ultrashort laser pulses irradiation with 25 μJ pulses, considering two different scanning steps based on the width between two grooves. These groups were duplicated and submitted to ageing. The surfaces were analysed using scanning electron microscopy (SEM), and X-ray diffraction. A finite element analysis, a biaxial flexure test, as well as fractographic and Weibull analyses, were performed. The strengths of the disks were statistically different for the treatment factor, and the principal stresses seemed to be concentrated at the centre of the specimens, as predicted by the computer simulations. Ageing decreased the strengths for all groups and increased the Weibull modulus for the laser group with the 40 μm-width between two grooves. The sandblasting group presented the highest monoclinic phase peak. Although the most significant strength was found within the sandblasting group, the phase transformation was favourable to the laser groups. The Weibull modulus was higher for the laser group with the 60 μm-width between two grooves, confirming the highest homogeneity of its failure distribution. Regardless of the surface treatment, strength was decreased with ageing in all groups. The femtosecond Ti:Sa ultra-short pulse laser irradiation can be suggested as an alternative to the gold standard sandblasting in long-term Y-TZP zirconia rehabilitations, such as crowns and veneers.  相似文献   
2.
In this study, lead-free (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 compositions are synthesized via conventional solid oxide route, and the ceramics are fabricated with normal sintering in air. The effects of composition fluctuations on dielectric, piezoelectric, and mechanical properties are investigated. The phase structure and the microstructure are analyzed with X-ray diffraction and scanning electron microscopy. The best dielectric and piezoelectric properties of εr = 11 207 and d33 = 330 pC/N were obtained for BZT−0.35BCT and BZT−0.5BCT ceramics, respectively. The mechanical behavior—in terms of Vickers hardness and compressive and flexural strengths—was investigated, and the best mechanical behavior was found in the vicinity of the phase transition boundary with x values between 0.5 and 0.6.  相似文献   
3.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   
4.
5.
6.
7.
Multimedia Tools and Applications - Video games are changing how we interact and communicate with each other. They can provide an authentic and collaborative platform for building new communities...  相似文献   
8.
Neural Computing and Applications - The modelling and prediction of extreme temperature changes in enclosed compartments is a domain with applications ranging from residential fire alarms,...  相似文献   
9.
10.
The outstanding mechanical properties of soft materials i.e. natural rubber are partly due to the organic–inorganic nanomatrix structure because numerous organic microparticles are dispersed in a small amount of an inorganic nanomatrix composed of inorganic nanoparticles and organic macromolecules. Here we form an organic–inorganic nanomatrix using graft-copolymerization of a vinyl monomer with an inorganic oxide precursor onto natural rubber particles with an average diameter of 1 μm dispersed in water. The inorganic oxide precursor is converted into inorganic oxide nanoparticles through hydrolysis and condensation, forming chemical linkages between natural rubber microparticles and inorganic oxide nanoparticles. Transmission electron microscopy indicates that the organic–inorganic nanomatrix is densely filled with inorganic oxide nanoparticles and the natural rubber microparticles are dispersed in the nanomatrix. This nanomatrix composite realizes both energetic elasticity and entropic elasticity of a soft material, opening a novel field of building block chemistry with respect to a pair of organic microparticles and inorganic nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号