首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   60篇
  国内免费   6篇
电工技术   66篇
综合类   2篇
化学工业   256篇
金属工艺   29篇
机械仪表   49篇
建筑科学   30篇
矿业工程   2篇
能源动力   114篇
轻工业   152篇
水利工程   13篇
石油天然气   14篇
武器工业   1篇
无线电   167篇
一般工业技术   263篇
冶金工业   198篇
原子能技术   10篇
自动化技术   248篇
  2024年   6篇
  2023年   36篇
  2022年   46篇
  2021年   82篇
  2020年   56篇
  2019年   76篇
  2018年   72篇
  2017年   47篇
  2016年   72篇
  2015年   39篇
  2014年   54篇
  2013年   103篇
  2012年   49篇
  2011年   67篇
  2010年   39篇
  2009年   46篇
  2008年   37篇
  2007年   38篇
  2006年   30篇
  2005年   23篇
  2004年   33篇
  2003年   21篇
  2002年   21篇
  2001年   21篇
  2000年   25篇
  1999年   20篇
  1998年   57篇
  1997年   38篇
  1996年   36篇
  1995年   26篇
  1994年   30篇
  1993年   23篇
  1992年   13篇
  1991年   27篇
  1990年   25篇
  1989年   24篇
  1988年   17篇
  1987年   13篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   13篇
  1982年   12篇
  1981年   9篇
  1979年   9篇
  1978年   8篇
  1976年   6篇
  1972年   6篇
  1968年   3篇
  1966年   4篇
排序方式: 共有1614条查询结果,搜索用时 46 毫秒
1.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
2.
Journal of Materials Science: Materials in Electronics - Multiwalled carbon nanotubes, due to high conductivity, stability, and large specific surface area, have a potential ability to promote...  相似文献   
3.
Objective

Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T.

Methods

The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation model was performed on phantom for the coil array.

Results

The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-error of 6.7% was found between measured and simulated transmit field maps on phantom.

Conclusion

The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.

  相似文献   
4.
Coeliac disease (CD) and Type 1 diabetes mellitus (T1DM) are immune-mediated diseases. Emerging evidence suggests that dysbiosis in the gut microbiome plays a role in the pathogenesis of both diseases and may also be associated with the development of neuropathy. The primary goal in this cross-sectional pilot study was to identify whether there are distinct gut microbiota alterations in children with CD (n = 19), T1DM (n = 18) and both CD and T1DM (n = 9) compared to healthy controls (n = 12). Our second goal was to explore the relationship between neuropathy (corneal nerve fiber damage) and the gut microbiome composition. Microbiota composition was determined by 16S rRNA gene sequencing. Corneal confocal microscopy was used to determine nerve fiber damage. There was a significant difference in the overall microbial diversity between the four groups with healthy controls having a greater microbial diversity as compared to the patients. The abundance of pathogenic proteobacteria Shigella and E. coli were significantly higher in CD patients. Differential abundance analysis showed that several bacterial amplicon sequence variants (ASVs) distinguished CD from T1DM. The tissue transglutaminase antibody correlated significantly with a decrease in gut microbial diversity. Furthermore, the Bacteroidetes phylum, specifically the genus Parabacteroides was significantly correlated with corneal nerve fiber loss in the subjects with neuropathic damage belonging to the diseased groups. We conclude that disease-specific gut microbial features traceable down to the ASV level distinguish children with CD from T1DM and specific gut microbial signatures may be associated with small fiber neuropathy. Further research on the mechanisms linking altered microbial diversity with neuropathy are warranted.  相似文献   
5.
6.
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices.  相似文献   
7.
In the present study, hexagonal boron nitride (h-BN) was synthesized from boric acid and melamine by thermal annealing method in a nitrogen atmosphere. The pure h-BN was used as an efficient sorbent for the uptake of Cd2+ ions from the solution phase. The kinetics and sorption studies of metal ions onto the h-BN were carried out in batch adsorption experiments at different temperature, time, pH, sorbent dosage, and concentration of metal ions. The optimum pH for the removal of the Cd2+ ions was found to be pH 7. The effect of temperature showed that the process of Cd2+ sorption remained endothermic in the range of 298 K–328 K. The Lagergren's first and Ho's second kinetic models were tested to interpret the adsorption kinetic data, however the present data was explained well by Ho's model for kinetics. The thermodynamic perameters ΔG, ΔS and ΔH were determined using the available adsorption data at different temperatures. The physicochemical properties of the synthesized product were also characterized before and after adsorption by different analytical techniques like FT-IR, TGA, XRD and Point of Zero Charge (PZC). The morphology of the surface was analyzed with the help of Scanning Electron Microscopy. The h-BN proved to be an efficient adsorbent for the uptake of the Cd2+ ions from aqueous media.  相似文献   
8.
9.
This work is based on formulating and optimizing controlled release (CR) valsartan (160 mg) tablets using different viscosity grades of the cellulosic polymer. The objective was to develop an effective once-daily drug delivery system of this cardiovascular agent. Central composite design was used for designing the formulations. Polymers used were Methocel® K4M, K15M and K100M. Compatibility of excipients with active was studied through FT-IR. Micromeritic properties were determined and formulations exhibiting appropriate flow characteristics were compressed. Swelling behavior and in vitro buoyancy effect were studied and response surface curves were constructed to optimize the formulation. Multi-point dissolution profiles of valsartan CR tablets at pH 1.2, 4.5 and 6.8 were obtained. Model-dependent and model-independent methods were performed including f2, stability test as per ICH guidelines and ANOVA. FT-IR studies revealed the compatibility of valsartan with all excipients. Formulation K4T9 (containing 25% K4M polymer) was selected to be the best optimized trial, based on physical properties and controlled release profile (23% at 4 h, 82% at 16 h and 100% at 24 h). Results of buoyancy and swelling behavior indicated that HPMC-K4M polymer exhibited excellent floating lag time and swelling indexes. In vitro drug release kinetics showed that formulation K4T9 displayed Korsmeyer–Peppas drug release pattern with r value > 0.99. The manufacturing process of K4T9 was also found to be reproducible with a shelf life period of 41 and 36 months at room temperature and accelerated conditions, respectively. Valsartan CR matrix-based formulation was successfully prepared with Methocel K4M retardant.  相似文献   
10.
Pattern Analysis and Applications - This paper presents a reliable and real-time method to detect pedestrians in image scenes that can vary greatly in appearance. To achieve greater reliability in...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号