首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
化学工业   22篇
机械仪表   3篇
无线电   3篇
一般工业技术   5篇
冶金工业   2篇
自动化技术   6篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Hydrogel-based nanofibers or vice versa are a relatively new class of nanomaterials, in which hydrogels are structured in nanofibrous form. Structure and size of the material directly governs its functionality, therefore, in hydrogel science, the nanofibrous form of hydrogels enables its usage in targeted applications. Hydrogel nanofiber system combines the desirable properties of both hydrogel and nanofiber like flexibility, soft consistency, elasticity, and biocompatibility due to high water content, large surface area to volume ratio, low density, small pore size and interconnected pores, high stiffness, tensile strength, and surface functionality. Swelling behavior is a critical property of hydrogels that is significantly increased in hydrogel nanofibers due to their small size. Electrospinning is the most popular method to fabricate “hydrogel nanofibers,” while other processes like self-assembly, solution blowing and template synthesis also exist. Merging the characteristics of both hydrogels and nanofibers in one system allows applications in drug delivery, tissue engineering, actuation, wound dressing, photoluminescence, light-addressable potentiometric sensor (LAPS), waterproof breathable membranes, and enzymatic immobilization. Treatment of wastewater, detection, and adsorption of metal ions are also emerging applications. In this review paper, we intend to summarize in detail about electrospun “hydrogel nanofiber” in relation to its synthesis, properties, and applications.  相似文献   
2.
Blend films of two types (I and II) were prepared by mixing Antheraea mylitta silk fibroin (AMF) and gelatin solution in various blend ratios via the solution casting method. Two different crosslinkers, namely glutaraldehyde and genipin, were used during blend preparation. The structural characteristics and thermal properties of the blend films were examined by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), Thermogravimetric analysis (TGA) and Diffrential scanning calorimetery (DSC). The FTIR spectra showed conformational alterations in type I blend films while type II films attained high β‐sheet crystallinity. The XRD diffractograms presented a high degree of crystallinity in type II blend films compared to type I, which showed an almost amorphous structure. Further, thermal and biological studies were conducted on type II films. According to the TGA thermograms, the degradation temperature of the crosslinked blend films shifted compared to pure gelatin and pure AMF films. Partial miscibility of the two components was indicated by DSC thermograms of the blends. The high water uptake capacity of type II blend films was found to imitate hydrogel behaviour. The blend films did not show any toxicity in 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and supported L929 fibroblast cell spreading and proliferation. The biodegradation of the blend films was significantly faster than the pure silk film. © 2020 Society of Industrial Chemistry  相似文献   
3.
Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.  相似文献   
4.
Hybrid electrochemical energy storage devices combine the advantages of battery and supercapacitors, resulting in systems of high energy and power density. Using LiPF(6) electrolyte, the Ni-Sn/PANI electrochemical system, free of Li-based electrodes, works on a hybrid mechanism based on Li intercalation at the anode and PF(6)(-) doping at the cathode. Here, we also demonstrate a composite nanostructure electrochemical device with the anode (Ni-Sn) and cathode (polyaniline, PANI) nanowires packaged within conformal polymer core-shell separator. Parallel array of these nanowire devices shows reversible areal capacity of ~3 μAh/cm(2) at a current rate of 0.03 mA/cm(2). The work shows the ultimate miniaturization possible for energy storage devices where all essential components can be engineered on a single nanowire.  相似文献   
5.
Materials engineering plays a key role in the field of energy storage. In particular, engineering materials at the nanoscale offers unique properties resulting in high performance electrodes and electrolytes in various energy storage devices. Consequently, considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using these advanced materials. Various multi‐functional hybrid nanostructured materials are currently being studied to improve energy and power densities of next generation storage devices. This review describes some of the recent progress in the synthesis of different types of hybrid nanostructures using template assisted and non‐template based methods. The potential applications and recent research efforts to utilize these hybrid nanostructures to enhance the electrochemical energy storage properties of Li‐ion battery and supercapacitor are discussed. This review also briefly outlines some of the recent progress and new approaches being explored in the techniques of fabrication of 3D battery structures using hybrid nanoarchitectures.  相似文献   
6.
In this paper, a new adaptive neuro controller for trajectory tracking is developed for robot manipulators without velocity measurements, taking into account the actuator constraints. The controller is based on structural knowledge of the dynamics of the robot and measurements of joint positions only. The system uncertainty, which may include payload variation, unknown nonlinearities and torque disturbances is estimated by a Chebyshev neural network (CNN). The adaptive controller represents an amalgamation of a filtering technique to generate pseudo filtered tracking error signals (for the elimination of velocity measurements) and the theory of function approximation using CNN. The proposed controller ensures the local asymptotic stability and the convergence of the position error to zero. The proposed controller is robust not only to structured uncertainty such as payload variation but also to unstructured one such as disturbances. Moreover the computational complexity of the proposed controller is reduced as compared to the multilayered neural network controller. The validity of the control scheme is shown by simulation results of a two-link robot manipulator. Simulation results are also provided to compare the proposed controller with a controller where velocity is estimated by finite difference methods using position measurements only.  相似文献   
7.
Crystallization of polypropylene (PP) in the blends of PP with styrene–ethylene butylene–styrene triblock copolymer (SEBS) is studied through differential thermal analysis (DTA) and X-ray diffraction measurements. Analysis of crystallization exotherm peaks in terms of crystallization nucleation and growth rates, crystallite size distribution, and crystallinity revealed differences in the morphology of PP component in the blend in the different regions of blend composition. Crystallinity determined by X-ray diffraction and DTA showed identical variations with blend composition. Variations in tensile properties of these blends with blend composition are also reported. Correlations of the various tensile properties with the crystallization parameters, viz., the crystallinity and crystallite size distribution, are presented, which confirm the influence of crystallization of PP component on the tensile properties of these blends.  相似文献   
8.
Cetyl trimethyl ammonium bromide (CTAB) modified montmorillonite (MMT) clay (CTAB-MT) doped, tasar silk fibroin-polyvinyl alcohol blend-based 3D nanowebs are generated through electrospinning technique. The morphological analysis reveals the formation of interlinked 3D nanoweb-like architecture and high surface roughness through scanning electron microscopy (SEM) and atomic force microscopy, respectively. The existence of CTAB-MT in nanowebs is confirmed by Fourier transform infrared and complete exfoliation of clay in the polymer blend matrix along with the altered crystallinity of samples is indicated in X-ray diffraction. The incorporation of CTAB-MT clay has shown the enhancement of thermal and mechanical properties of nanoweb samples while the water uptake capacity is reduced and enzymatic biodegradability is found to slow down. The samples present excellent biocompatibility with no cytotoxicity in the Alamar blue assay and high attachment as well as spreading of L929 fibroblast cells covering the entire surface as observed in SEM. The CTAB-MT clay has imparted the samples with good antimicrobial activity against E. coli and S. aureus bacterial strains. The aforementioned properties of these CTAB-MT clay doped 3D nanowebs direct toward their suitability as a potential candidate for tissue engineering applications in the biomedical field.  相似文献   
9.
Multimedia Tools and Applications - Contrast enhancement and Mean brightness conservation are two important parameters of image enhancement. A high contrast image is good in subjective quality...  相似文献   
10.
This paper highlights the effect of different concentrations of titanium dioxide (TiO2) nanoparticles on the electrical and optical properties of silk fibroin (SF). TiO2 based SF nanocomposite films were prepared using the solvent casting method. Uniform dispersion and agglomeration of nanoparticles, in nanocomposite films, were observed by field emission SEM. The conductivity of pure SF and nanocomposite films was determined by a four-point probe and the TiO2 nanoparticles were found to bring high conductivity to the nanocomposite films. Dielectric strength improved with the addition of nanoparticles to the SF matrix. Dielectric constant and capacitance of the pure SF and nanocomposite films were measured using an LCR meter, which showed a 10-fold enhancement on the addition of nanoparticles in SF. A very unusual property, i.e. negative resistance, was observed during LCR meter analysis for the nanocomposite films for a particular range of frequency (200–550 kHz), voltage (1 V) and current (0.5–1.5 μA). TiO2 nanoparticles changed the semiconducting behavior of the SF films from p-type to n-type as measured by the Hall effect experiment. The optical properties of pure SF and nanocomposite films were measured using a UV–visible spectrophotometer. The increased concentration of nanoparticles in the SF has effectively enhanced the absorbing coefficient, refractive index and percentage transmittance and reduced the bandgap energy. These SF/TiO2 nanocomposite films have shown the potential to be used as dielectric and high refractive index material for optoelectronics applications. © 2021 Society of Industrial Chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号