首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   5篇
化学工业   22篇
机械仪表   5篇
建筑科学   15篇
能源动力   8篇
轻工业   2篇
水利工程   1篇
石油天然气   1篇
无线电   10篇
一般工业技术   15篇
冶金工业   4篇
原子能技术   4篇
自动化技术   42篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   4篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   7篇
  2010年   6篇
  2009年   17篇
  2008年   7篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1984年   1篇
排序方式: 共有129条查询结果,搜索用时 16 毫秒
1.
2.
The Journal of Supercomputing - Data aggregation is an effective mechanism to prolong lifetime in the wireless sensor networks by preventing extra data transmission. However, it may have some...  相似文献   
3.
Simple beam–column connections are simpler and cheaper in construction than rigid beam–column connections, moreover, beams under the base level are only carrying gravity loads because of high rigidity of basement walls; therefore, seismic performance of special steel moment frame with basement wall is investigated in two cases in this paper. First, as the normal case of design, rigid beam–column connections are used under the base level, then all of the beam–column connections under the base level are changed to simple connections. The seismic performance of these two types is evaluated by FEMA P695 method. For predicting the collapse capacity of each archetype, adjusted collapse margin ratios are evaluated based on several nonlinear analyses and compared to acceptance criteria. Finally, seismic performance of these two kinds of structures is compared with each other. Despite the structural system’s change in height, seismic performance factors of special steel moment frames are considered for designing whole of the structures. Finally all two types of structures pass the acceptability checks and all the initial assumption are proved.  相似文献   
4.
Current force‐based design procedure adopted by most seismic design codes allows the seismic design of building structures to be based on static or dynamic analyses of elastic models of the structure using elastic design spectra. The codes anticipate that structures will undergo inelastic deformations under strong seismic events; therefore, such inelastic behaviour is usually incorporated into the design by dividing the elastic spectra by a factor, R, which reduces the spectrum from its original elastic demand level to a design level. The most important factors determining response reduction factors are the structural ductility and overstrength capacity. For a structure supporting on flexible foundation, as Soil Structure Interaction (SSI) extends the elastic period and increases damping of the structure‐foundation elastic system, the structural ductility could also be affected by frequency‐dependent foundation‐soil compliances. For inelastic systems supporting on flexible foundations, the inelastic spectra ordinates are greater than for elastic systems when presented in terms of flexible‐base structure's period. This implies that the reduction factors, which are currently not affected by the SSI effect, could be altered; therefore, the objective of this research is to evaluate the significance of foundation flexibility on force reduction factors of RC frame structures. In this research, by developing some generic RC frame models supporting on flexible foundations, effects of stiffness and strength of the structure on force reduction factors are evaluated for different relative stiffnesses between the structure and the supporting soil. Using a set of artificial earthquake records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration time histories to a level, where first yielding of steel in linear analysis and a level in which collapse of the structure in nonlinear analysis are observed. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicated that the foundation flexibility could significantly change the response reduction factors of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of seismic performance of flexibly supported RC frame structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
Surface response to excitation (SuRE) method was originally developed for structural health monitoring (SHM) applications. SuRE was used to evaluate the performance of completed milling operations. The method generates surface waves on the plate and studies the spectrum changes at selected points to detect defects and change of compressive forces. In this study, the length, depth, and width of a slot were changed step by step. The surface of the aluminum plate was excited in the 20–400 kHz range with a piezoelectric element. A laser scanning vibrometer was used to monitor the vibrations at the predetermined grid points after the dimensions of the slot were changed methodically. The frequency spectrums of measured vibrations were calculated by using the Fast Fourier Transformation (FFT). The sums of the squares of the differences (SSD) of the spectrums were calculated to evaluate the change of the spectrums. The SuRE method was able to determine if the dimensions were changed in each case at all the selected points. The scanning laser vibrometer is not feasible to be used at the shop floor. However, the study demonstrated that a piezoelectric element attached to any of the grid points would be able to evaluate the completed machining process.  相似文献   
6.
Multimedia Tools and Applications - The growth of digital technology over the recent years has led to increased sending and saving of electronic media. Taking advantage of digital works without...  相似文献   
7.
Fourier analysis and Singular Value Decomposition (SVD) are two familiar methods for mode detection in tokamaks. In this article this two methods, fourier and SVD, have compared. The results show fourier analysis in m ≥ 3 and when the energy is balanced between modes could not recognize the correct mode number. The SVD analysis is cited method for all modes.  相似文献   
8.
In this work, polymerization of caprolactam (CL) was carried out in the presence of acrylonitrile butadiene rubber (NBR) during the reactive melt‐mixing process. During shear mixing, NBR particles swelled and dissolved in the molten CL, which led to separation and distribution of rubber particles to nanoscale in the dissolution stage. Then, in an internal mixer, supertough Polyamide 6 was prepared via melt polymerization of CL/NBR mixture, sodium caprolactam as a catalyst, and hexamethylene diisocyanate as an activator. The effects of various concentrations of catalyst and activator on the initiation time of the reaction were determined. Physical and mechanical properties of different formulations prepared via reactive melt blending were determined by tensile and impact measurements, differential scanning calorimetry, Fourier‐transform infrared spectroscopy, X‐ray scattering techniques, transmission electron microscopy, and dynamic mechanical thermal analysis. Experimental results showed that a recipe with 3% nitrile rubber in a CL/NBR mixture enhances the physical and mechanical properties the best, compared with other formulations. This condition led to the formation of NBR nanospheres during melt polymerization of Polyamide 6 as well. J. VINYL ADDIT. TECHNOL., 21:116–121, 2015. © 2014 Society of Plastics Engineers  相似文献   
9.
Old grades of creep resistant materials such as P11 and P22 have been studied in depth and data and prediction models are available for design and fitness for service assessment of creep rupture, creep crack growth, thermo-mechanical fatigue, etc. However, as the 9%Cr material is relatively new, there is relatively limited data available and understanding with respect to quantifying the effect of variables on life prediction of components fabricated from P91 is more difficult. Since grade P91 steel was introduced in the 1980s as enhanced ferritic steel, it has been used extensively in high temperature headers and steam piping systems in power generating plant. However, evidence from pre-mature weld failures in P91 steel suggests that design standards and guidelines may be non-conservative for P91 welded pressure vessels and piping. Incidences of cracking in P91 welds have been reported in times significantly less than 100,000 h leading to safety and reliability concerns worldwide. This paper provides a review and reanalysis of published information using properties quoted in codes of practice and from recent research data regarding the creep crack growth of P91 steel, and uses existing models to predict its behaviour. Particular areas where existing data are limited in the literature are highlighted. Creep crack growth life is predicted based on short-term uniaxial creep crack growth (CCG) data. Design and assessment challenges that remain in treating P91 weld failures are then addressed in light of the analysis.  相似文献   
10.
In this paper the behavior of steel pipes, filled and unfilled with concrete, is studied under cyclic shear to examine the possibility of their use as a seismic damper. Two specimens of steel pipes filled inside with concrete are tested under monotonic and cyclic shear. Four other specimens of bare steel pipes are tested under fully reversed cyclic shear loading. The results show that the bare steel pipes are capable of absorbing a great amount of energy under a severe cyclic shear loading with a stable hysteretic behavior. This behavior is also simulated using the finite element method. Then, parametric studies are performed to investigate the effects of variations in geometrical properties of the pipe on its hysteretic behavior. A simplified bi-linear model is proposed to approximate the hysteretic behavior of the steel pipe as a metallic-yielding damper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号