首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   16篇
  国内免费   2篇
电工技术   2篇
综合类   1篇
化学工业   90篇
金属工艺   17篇
机械仪表   5篇
建筑科学   5篇
能源动力   26篇
轻工业   17篇
水利工程   10篇
石油天然气   1篇
无线电   48篇
一般工业技术   75篇
冶金工业   22篇
原子能技术   1篇
自动化技术   57篇
  2023年   5篇
  2022年   18篇
  2021年   13篇
  2020年   11篇
  2019年   17篇
  2018年   10篇
  2017年   13篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   35篇
  2012年   24篇
  2011年   25篇
  2010年   23篇
  2009年   14篇
  2008年   11篇
  2007年   15篇
  2006年   7篇
  2005年   12篇
  2004年   4篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   1篇
  1981年   4篇
  1979年   1篇
  1976年   1篇
排序方式: 共有377条查询结果,搜索用时 31 毫秒
1.
This paper presents a research study on a bridge site located along US highway 67 over SH 174 in Cleburne, Texas, where bridge approach slabs have experienced more than 0.4 m (17 in.) of settlement within a span of 16 years after construction. Many treatment methods attempted to mitigate this problem had proven to be ineffective. As part of novel rehabilitation works, the top of existing fill soil on the embankment was replaced with lightweight expanded polystyrene (EPS) geofoam blocks to alleviate the approach slab settlements. This paper describes initial design and construction details of the rehabilitation works performed on the embankment system along with a focus on the early performance details. Field monitoring studies were conducted for almost three years to study the bump/settlements under the EPS geofoam embankment system. Short term measured settlement data was analyzed with hyperbolic model to predict the long term settlements. Numerical finite element studies attempted in this study showed that settlements could be reasonably predicted by modeling these geofoam embankments. Based on the monitoring and modeling studies, the effectiveness of utilizing EPS geofoam as an embankment fill material was addressed to mitigate the differential settlements under a bridge approach slab.  相似文献   
2.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
3.
Journal of Electronic Materials - Microwave radar absorbers are widely used in the strategic sector and wireless communication systems to reduce the radar cross-section of a target and...  相似文献   
4.
Calcium oxalate (CaOx) is the major phase in kidney stones and the primary calcium storage medium in plants. CaOx can form crystals with different lattice types, water contents, and crystal structures. However, the conditions and mechanisms leading to nucleation of particular CaOx crystals are unclear. Here, liquid-cell transmission electron microscopy and atomistic molecular dynamics simulations are used to study in situ CaOx nucleation at different conditions. The observations reveal that rhombohedral CaOx monohydrate (COM) can nucleate via a classical pathway, while square COM can nucleate via a non-classical multiphase pathway. Citrate, a kidney stone inhibitor, increases the solubility of calcium by forming calcium-citrate complexes and blocks oxalate ions from approaching calcium. The presence of multiple hydrated ionic species draws additional water molecules into nucleating CaOx dihydrate crystals. These findings reveal that by controlling the nucleation pathways one can determine the macroscale crystal structure, hydration state, and morphology of CaOx.  相似文献   
5.
Palladium nanoparticles (Pd‐BNP) stabilized by a binaphthyl‐backbone can be efficiently used for the chemoselective reduction of aldehydes in the presence of hydrogen at room temperature in water. The Pd‐BNP catalyst is easily recovered and reused for five catalytic cycles.

  相似文献   

6.
Highly dense electrically conductive silicon carbide (SiC)–(0, 10, 20, and 30 vol%) titanium boride (TiB2) composites with 10 vol% of Y2O3–AlN additives were fabricated at a relatively low temperature of 1800°C by spark plasma sintering in nitrogen atmosphere. Phase analysis of sintered composites reveals suppressed β→α phase transformation due to low sintering temperature, nitride additives, and nitrogen sintering atmosphere. With increase in TiB2 content, hardness increased from 20.6 to 23.7 GPa and fracture toughness increased from 3.6 to 5.5 MPa m1/2. The electrical conductivity increased to a remarkable 2.72 × 103 (Ω cm)–1 for SiC–30 vol% TiB2 composites due to large amount of conductive reinforcement, additive composition, and sintering in nitrogen atmosphere. The successful electrical discharge machining illustrates potential of the sintered SiC–TiB2 composites toward extending the application regime of conventional SiC-based ceramics.  相似文献   
7.
Clean Technologies and Environmental Policy - There is a growing consensus that the increase in greenhouse gases results in unfavorable changes to the Earth’s climate and is responsible for...  相似文献   
8.
In this article, we report on the application of our spherical nanoindentation data analysis protocols to study the mechanical response of grain boundary regions in as-cast and 30% deformed polycrystalline Fe–3%Si steel. In particular, we demonstrate that it is possible to investigate the role of grain boundaries in the mechanical deformation of polycrystalline samples by systematically studying the changes in the indentation stress–strain curves as a function of the distance from the grain boundary. Such datasets, when combined with the local crystal lattice orientation information obtained using orientation imaging microscopy, open new avenues for characterizing the mechanical behavior of grain boundaries based on their misorientation angle, dislocation density content near the boundary, and their propensity for dislocation source/sink behavior.  相似文献   
9.
Proton exchange membrane fuel cells are one of the most promising technologies for sustainable power generation in the future. In particular, high‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) offer several advantages such as increased kinetics, reduced catalyst poisoning and better heat management. One of the essential components of a HT‐PEMFC is the proton exchange membrane, which has to possess good proton conductivity as well as stability and durability at the required operating temperatures. Amongst the various membrane candidates, phosphoric acid‐impregnated polybenzimidazole‐type polymer membranes (PBI/PA) are considered the most mature and some of the most promising, providing the necessary characteristics for good performance in HT‐PEMFCs. This review aims to examine the recent advances made in the understanding and fabrication of PBI/PA membranes, and offers a perspective on the future and prospects of deployment of this technology in the fuel cell market. © 2014 Society of Chemical Industry  相似文献   
10.
Transient flow during nominally steady conditions is responsible for many intermittent defects during the continuous casting of steel. The double-ruler electromagnetic field configuration, or “FC-Mold EMBr,” is popular in commercial slab casting as it provides independent control of the applied static field near the jet and free surface regions of the mold. In the current study, transient flow in a typical commercial caster is simulated in the absence and in the presence of a double-ruler magnetic field, with rulers of equal strengths. Large eddy simulations with the in-house code CU-FLOW resolve the important transient behavior, using grids of over five million cells with a fast parallel solver. In the absence of a magnetic field, a double-roll pattern is observed, with transient unbalanced behavior, high surface velocities (~0.5 m/s), surface vortex formation, and very large surface-level fluctuations (~±12 mm). Applying the magnetic field suppresses the unbalanced behavior, producing a more complex mold flow pattern, but with much lower surface velocities (~0.1 m/s), and a flat surface level with small level fluctuations (<±1 mm). Nail board measurements taken at this commercial caster, in the absence of the field, matched reasonably well with the calculated results, both quantitatively and qualitatively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号