首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   9篇
电工技术   4篇
化学工业   58篇
金属工艺   6篇
建筑科学   6篇
能源动力   8篇
轻工业   8篇
水利工程   1篇
无线电   10篇
一般工业技术   39篇
冶金工业   5篇
原子能技术   2篇
自动化技术   32篇
  2021年   9篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   13篇
  2012年   14篇
  2011年   12篇
  2010年   5篇
  2009年   11篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
1.
Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.  相似文献   
2.
Osteocytes—the central regulators of bone remodeling—are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno‐canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high‐resolution imaging and physics‐based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals.  相似文献   
3.
4.
A simple strategy for calibrating the geometry of light sources   总被引:1,自引:0,他引:1  
We present a methodology for calibrating multiple light source locations in 3D from images. The procedure involves the use of a novel calibration object that consists of three spheres at known relative positions. The process uses intensity images to find the positions of the light sources. We conducted experiments to locate light sources in 51 different positions in a laboratory setting. Our data shows that the vector from a point in the scene to a light source can be measured to within 2.7±4° at α=.05 (6 percent relative) of its true direction and within 0.13±.02 m at α=.05 (9 percent relative) of its true magnitude compared to empirically measured ground truth. Finally, we demonstrate how light source information is used for color correction  相似文献   
5.
Fast accurate fuzzy clustering through data reduction   总被引:11,自引:0,他引:11  
Clustering is a useful approach in image segmentation, data mining, and other pattern recognition problems for which unlabeled data exist. Fuzzy clustering using fuzzy c-means or variants of it can provide a data partition that is both better and more meaningful than hard clustering approaches. The clustering process can be quite slow when there are many objects or patterns to be clustered. This paper discusses the algorithm brFCM, which is able to reduce the number of distinct patterns which must be clustered without adversely affecting the partition quality. The reduction is done by aggregating similar examples and then using a weighted exemplar in the clustering process. The reduction in the amount of clustering data allows a partition of the data to be produced faster. The algorithm is applied to the problem of segmenting 32 magnetic resonance images into different tissue types and the problem of segmenting 172 infrared images into trees, grass and target. Average speed-ups of as much as 59-290 times a traditional implementation of fuzzy c-means were obtained using brFCM, while producing partitions that are equivalent to those produced by fuzzy c-means.  相似文献   
6.
In the application field of forging, the form-giving tool components are subject to process-related severe environmental conditions, such as high mechanical loads acting simultaneously with high tribological and thermal charges. Due to high machine hour rates as well as increasing environmental requirements in terms of energy consumption, wear protection methods and suitable repair measures for forging tools become more and more important. Laser deposition welding represents an established process for the repair of complex shaped surfaces. A new approach is the addition of nano-sized ceramic particles to improve the mechanical properties. The main idea is to reduce the grain size of the cladded layers by adding nano-sized nuclei. A fine grained microstructure will improve strength as well as ductility and fatigue resistance. Furthermore small hard particles can improve the wear resistance without affecting the friction of the surface. After the cladding process the surface has to be finished usually by turning, milling and grinding operations. Within the presented paper the potential of nanoparticle-reinforced deposition welding with regard to increasing the wear resistance of forging dies will be examined. First, the process of nanoparticle-reinforced deposition welding will be presented. Afterwards it will be shown that yttrium oxide, titanium carbide and tungsten carbide nanoparticles in an AISI H10 matrix material will influence the friction coefficient between forging tool and material as well as the wear properties.  相似文献   
7.
The development of multifunctional nanoscale systems that can mediate efficient tumor targeting, together with high cellular internalization, is crucial for the diagnosis of glioma. The combination of imaging agents into one platform provides dual imaging and allows further surface modification with targeting ligands for specific glioma detection. Herein, transferrin (Tf)-decorated niosomes with integrated magnetic iron oxide nanoparticles (MIONs) and quantum dots (QDs) were formulated (PEGNIO/QDs/MIONs/Tf) for efficient imaging of glioma, supported by magnetic and active targeting. Transmission electron microscopy confirmed the complete co-encapsulation of MIONs and QDs in the niosomes. Flow cytometry analysis demonstrated enhanced cellular uptake of the niosomal formulation by glioma cells. In vitro imaging studies showed that PEGNIO/QDs/MIONs/Tf produces an obvious negative-contrast enhancement effect on glioma cells by magnetic resonance imaging (MRI) and also improved fluorescence intensity under fluorescence microscopy. This novel platform represents the first niosome-based system which combines magnetic nanoparticles and QDs, and has application potential in dual-targeted imaging of glioma.  相似文献   
8.
In this paper, a boundary version of the Schwarz lemma is investigated for driving point impedance functions and its circuit applications. It is known that driving point impedance function, Z(s) = 1 + cp(s − 1)p + cp + 1(s − 1)p + 1 + ..., p > 1, is an analytic function defined on the right half of the s-plane. Two theorems are presented using the modulus of the derivative of driving point impedance function, |Z(0)|, by assuming the Z(s) function is also analytic at the boundary point s = 0 on the imaginary axis with . In the obtained inequalities, the value of the function at s = 1 and the derivatives with different orders have been used. Finally, the sharpness of the inequalities obtained in the presented theorems is proved. Simple LC circuits are obtained using the obtained driving point impedance functions.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号