首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10914篇
  免费   1147篇
  国内免费   557篇
电工技术   810篇
技术理论   2篇
综合类   838篇
化学工业   1625篇
金属工艺   616篇
机械仪表   659篇
建筑科学   826篇
矿业工程   318篇
能源动力   392篇
轻工业   924篇
水利工程   235篇
石油天然气   461篇
武器工业   128篇
无线电   1350篇
一般工业技术   1324篇
冶金工业   565篇
原子能技术   82篇
自动化技术   1463篇
  2024年   34篇
  2023年   174篇
  2022年   378篇
  2021年   501篇
  2020年   397篇
  2019年   298篇
  2018年   327篇
  2017年   398篇
  2016年   359篇
  2015年   464篇
  2014年   593篇
  2013年   652篇
  2012年   807篇
  2011年   765篇
  2010年   718篇
  2009年   716篇
  2008年   638篇
  2007年   634篇
  2006年   534篇
  2005年   442篇
  2004年   394篇
  2003年   356篇
  2002年   446篇
  2001年   388篇
  2000年   263篇
  1999年   217篇
  1998年   140篇
  1997年   96篇
  1996年   113篇
  1995年   86篇
  1994年   86篇
  1993年   47篇
  1992年   25篇
  1991年   25篇
  1990年   21篇
  1989年   19篇
  1988年   12篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1977年   1篇
  1976年   1篇
  1975年   5篇
  1973年   1篇
  1969年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
2.
以16t纯电环卫车箱体为研究对象,通过有限元分析方法的研究,在实现轻量化设计的同时解决了箱体开裂的问题,经实车验证强度满足,同时实现降重40kg,为纯电环卫车的轻量化设计提供了一条可行的途径.  相似文献   
3.
A superhydrophobic ceria-based composite coating is developed to improve anticorrosion properties of AZ61 magnesium alloy, fabricating via chemical conversion method followed by hydrothermal treatment. The cerium conversion coating has a block structure with microcracks. After the hydrothermal treatment, a dense CeO2 layer, porous CeO2 nanorods, and stearic absorbing layers are grown stepwise on the conversion coating. And the composite coating is hydrophobic or even superhydrophobic and has almost no microcracks. As the hydrothermal reaction time increases, the water contact angle of the composite coating first increases and then decreases, and it reaches the maximum value of 152° after hydrothermal treatment for 4 h. Both the dense CeO2 layer and the superhydrophobic stearic absorbing layer can effectively prevent the electrolyte from contacting the substrate; the corrosion current density of the superhydrophobic composite coating is lower than that of the hydrophilic composite coating and the cerium conversion coating, and has the best corrosion resistance.  相似文献   
4.
5.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
6.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
7.
Despite long-term efforts for exploring antibacterial agents or drugs, potentiating antibacterial activity and meanwhile minimizing toxicity to the environment remains a challenge. Here, it is experimentally shown that the functionality of reduced graphene oxide (rGO) through copper ions displays selective antibacterial activity that is significantly stronger than that of rGO itself and no toxicity to mammalian cells. Remarkably, this antibacterial activity is two-orders-of-magnitude greater than the activity of its surrounding copper ions. It is demonstrated that rGO is functionalized through the cation–π interaction to massively adsorb copper ions to form a rGO–copper composite and result in an extremely low concentration level of surrounding copper ions (less than ≈0.5 µm ). These copper ions on rGO are positively charged and strongly interact with negatively charged bacterial cells to selectively achieve antibacterial activity, while rGO exhibits the functionality to not only actuate rapid delivery of copper ions and massive assembly onto bacterial cells but also result in the valence shift in the copper ions from Cu2+ into Cu+, which greatly enhances the antibacterial activity. Notably, this rGO functionality through cation–π interaction with copper ions can similarly achieve algaecidal activity but does not exert cytotoxicity against neutrally charged mammalian cells.  相似文献   
8.
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.  相似文献   
9.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号