首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61496篇
  免费   7198篇
  国内免费   4133篇
电工技术   10297篇
技术理论   3篇
综合类   6254篇
化学工业   4538篇
金属工艺   3638篇
机械仪表   4518篇
建筑科学   2892篇
矿业工程   2131篇
能源动力   2339篇
轻工业   1340篇
水利工程   1024篇
石油天然气   2103篇
武器工业   728篇
无线电   12933篇
一般工业技术   5904篇
冶金工业   2514篇
原子能技术   549篇
自动化技术   9122篇
  2024年   207篇
  2023年   853篇
  2022年   1393篇
  2021年   1777篇
  2020年   1981篇
  2019年   1620篇
  2018年   1537篇
  2017年   1990篇
  2016年   2250篇
  2015年   2614篇
  2014年   4034篇
  2013年   3762篇
  2012年   4779篇
  2011年   5096篇
  2010年   3930篇
  2009年   3773篇
  2008年   3663篇
  2007年   4463篇
  2006年   3936篇
  2005年   3160篇
  2004年   2569篇
  2003年   2325篇
  2002年   1931篇
  2001年   1645篇
  2000年   1402篇
  1999年   1122篇
  1998年   864篇
  1997年   744篇
  1996年   648篇
  1995年   558篇
  1994年   513篇
  1993年   330篇
  1992年   283篇
  1991年   245篇
  1990年   194篇
  1989年   165篇
  1988年   114篇
  1987年   68篇
  1986年   38篇
  1985年   46篇
  1984年   40篇
  1983年   20篇
  1982年   29篇
  1981年   24篇
  1980年   23篇
  1979年   14篇
  1975年   7篇
  1963年   4篇
  1959年   5篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
1.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
2.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
3.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
4.
《Ceramics International》2022,48(12):17185-17195
This study introduces micro-nano bubbles (MNBs) in the process of polishing zirconia ceramics through sodium borohydride hydrolysis to assist in polishing yttria-stabilized zirconia (YSZ). Compared with conventional silica sol, the material removal rate using this MNB-assisted technology is increased by 261.4%, and a lower surface roughness of 1.28 nm can be obtained. Raman, X-ray diffraction, and X-ray photoelectron spectroscopy are used to study the structural changes and phase stability of the YSZ during different polishing periods. The results show that MNBs are the key factor promoting the transformation from the tetragonal phase to the monoclinic phase on the surface of the YSZ during polishing. The H2O molecules (or OH? ions) on the surface of the YSZ are driven by the thermal kinetic energy of the micro-jets formed by the collapse of micro-bubbles, and they permeate to occupy more oxygen vacancies in the crystal lattice. Atomic force microscopy and nano-indentation tests show that the micro-protrusions on the surface of the YSZ preferentially undergo phase transformation, and their hardness decreases. This promotes abrasives to preferentially remove rough spots on the surface and achieve more efficient polishing. We believe this work adds valuable insights regarding low-temperature degradation and ultra-precise machining of YSZ ceramic materials.  相似文献   
5.
The onset of hybrid alumina-based composites, which combines two or more nano-particles within the alumina matrix has already shown promising improvements in the matrix material. However, variations in mechanical properties including the optimum compositions that give improved properties faced with the development of alumina-based composites require further studies to understand the underlying mechanisms and synergistic effects of the nano-particle additions on the alumina matrix. In the current study, the structure and properties of Al?O?-graphene (0.5 wt%) and Al?O?–ZrO? (4 wt% and 10 wt%) composites fabricated via hot-pressing was studied as a baseline for multiple combinations. Even though the addition of 10 wt%ZrO? resulted in a 23% reduction in the grain size of the alumina matrix, the 4 wt%ZrO? addition resulted in a 14% increase in grain size as compared to the parent alumina matrix. X-ray diffraction analysis revealed that there was approximately 85% monoclinic (m-ZrO2) vs. 15% tetragonal (t-ZrO2) crystal structures in the A4ZrO? sample whilst the A10ZrO? had approximately 93% m-ZrO2 vs. 7% t-ZrO2. The high-volume fraction of the monoclinic crystal structures in the A10ZrO? accounts for the induced microcracks in the sample since the transition from the ductile-tetragonal to brittle-monoclinic is associated with the exertion of compressive stresses on the alumina matrix by the associated elastic volume expansion of m-ZrO2. Also, the addition of 0.5 wt%graphene resulted in about 37% reduction in the grain size of the alumina matrix, and approximately 10% increase in hardness as a result of the distribution of graphene along the grain boundaries of the parent alumina matrix, which restricts grain coalescence and growth during processing. Furthermore, an increase up to 115% and 164% were observed in the fracture toughness (KIC) with the inclusion of 0.5 wt%graphene and 10 wt%ZrO? respectively, which was primarily ascribed to the fine-grained microstructures and toughening mechanisms of the intergranular graphene and ZrO? particles.  相似文献   
6.
频率特性分析在工程应用中具有重要的作用,在电路分析、模拟电子技术、信号与系统、自动控制理论等相关课程中都涉及到相关章节内容,在不同课程中如何根据工程应用和学生学习阶段把握具体的讲解内容和讲解方式非常重要。本文从频率特性的求解方法和具体物理意义角度开展在不同课程中讲解的方法,从时域和频域角度分别讨论其物理意义和具体的分析方法。通过渐进深化的教学过程和教学方法不断提高学生的知识掌握和应用技能,提高学生的工程意识、工程素质和工程创新能力,强化学生对于频率特性课程知识的综合应用能力。  相似文献   
7.
煤炭资源型城市为我国经济发展提供了重要的资源和能源支持,研究资源型城市转型的经验模式对调整区域经济结构、确保社会稳定和改善生态环境具有重要的实践意义。本文采用文献综述法和实证分析法,研究我国东部煤炭资源枯竭型城市转型所面临的共性难题,并以徐州贾汪区转型探索经历为例,总结城市转型的"徐州贾汪区模式",主要包括放大正向外部效应、长期坚持矿地融合、大力建设矿区社会生态系统恢复力三条路径。研究结果表明,煤炭城市转型发展的共性问题相互联系、相互影响,是一个系统性难题,必须引入系统性思维。我国东部矿区普遍人口密集,农业发达、沉陷积水是最主要的共性特征,煤炭开采产生的社会问题、经济问题、生态问题、环境问题基本相同,转型发展模式值得互鉴。  相似文献   
8.
This paper introduces the design of a hardware efficient reconfigurable pseudorandom number generator (PRNG) using two different feedback controllers based four-dimensional (4D) hyperchaotic systems i.e. Hyperchaotic-1 and -2 to provide confidentiality for digital images. The parameter's value of these two hyperchaotic systems is set to be a specific value to get the benefits i.e. all the multiplications (except a few multiplications) are performed using hardwired shifting operations rather than the binary multiplications, which doesn't utilize any hardware resource. The ordinary differential equations (ODEs) of these two systems have been exploited to build a generic architecture that fits in a single architecture. The proposed architecture provides an opportunity to switch between two different 4D hyperchaotic systems depending on the required behavior. To ensure the security strength, that can be also used in the encryption process in which encrypt the input data up to two times successively, each time using a different PRNG configuration. The proposed reconfigurable PRNG has been designed using Verilog HDL, synthesized on the Xilinx tool using the Virtex-5 (XC5VLX50T) and Zynq (XC7Z045) FPGA, its analysis has been done using Matlab tool. It has been found that the proposed architecture of PRNG has the best hardware performance and good statistical properties as it passes all fifteen NIST statistical benchmark tests while it can operate at 79.101-MHz or 1898.424-Mbps and utilize only 0.036 %, 0.23 %, and 1.77 % from the Zynq (XC7Z045) FPGA's slice registers, slice LUTs, and DSP blocks respectively. Utilizing these PRNGs, we design two 16 × 16 substitution boxes (S-boxes). The proposed S-boxes fulfill the following criteria: Bijective, Balanced, Non-linearity, Dynamic Distance, Strict Avalanche Criterion (SAC) and BIC non-linearity criterion. To demonstrate these PRNGs and S-boxes, a new three different scheme of image encryption algorithms have been developed: a) Encryption using S-box-1, b) Encryption using S-box-2 and, c) Two times encryption using S-box-1 and S-box-2. To demonstrate that the proposed cryptosystem is highly secure, we perform the security analysis (in terms of the correlation coefficient, key space, NPCR, UACI, information entropy and image encryption quantitatively in terms of (MSE, PSNR and SSIM)).  相似文献   
9.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
10.
支承或连接构件对梁结构的动力学性能有至关重要影响,必须保证其在振动过程中不发生破坏或者失效。通过合理设计和布局附加弹性支承可以实现对这些重要连接构件所承受约束反力的控制。应用微分变换法推导含附加支承的梁结构支承约束反力及其对于附加支承位置和刚度的灵敏度表达式,并通过优化设计附加支承位置和刚度实现具有弹性约束端的简支梁结构各支承约束反力的平衡,可提高结构的动力学性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号