首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479篇
  免费   10篇
  国内免费   11篇
电工技术   11篇
综合类   10篇
化学工业   587篇
金属工艺   126篇
机械仪表   28篇
建筑科学   9篇
矿业工程   17篇
能源动力   447篇
轻工业   2篇
石油天然气   9篇
无线电   48篇
一般工业技术   140篇
冶金工业   22篇
原子能技术   15篇
自动化技术   29篇
  2024年   1篇
  2023年   17篇
  2022年   27篇
  2021年   37篇
  2020年   29篇
  2019年   35篇
  2018年   23篇
  2017年   29篇
  2016年   11篇
  2015年   10篇
  2014年   46篇
  2013年   72篇
  2012年   57篇
  2011年   140篇
  2010年   117篇
  2009年   120篇
  2008年   140篇
  2007年   138篇
  2006年   67篇
  2005年   58篇
  2004年   26篇
  2003年   34篇
  2002年   36篇
  2001年   30篇
  2000年   31篇
  1999年   23篇
  1998年   24篇
  1997年   24篇
  1996年   17篇
  1995年   14篇
  1994年   12篇
  1993年   10篇
  1992年   14篇
  1991年   11篇
  1990年   7篇
  1989年   8篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有1500条查询结果,搜索用时 15 毫秒
1.
Due to stringent environmental regulations and the limited resources of fossil-based fuels, there is an urgent demand for clean and eco-friendly energy conversion devices. These criteria appear to be met by hydrogen proton exchange membrane fuel cells (PEMFCs). PEMFCs have attracted tremendous attention on account of their excellent performance with tunable operability and good portability. Nonetheless, their practical applications are hugely influenced by the scarcity and high cost of platinum (Pt) used as electrocatalysts at both cathode and anode. Pt is also susceptible to easy catalyst poisoning. Herein, this paper reviews the progress of the research regarding the development of electrocatalysts practically used in hydrogen PEMFCs, where the corner-stone reactions are cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR). To reduce the costs of PEMFCs, lessening or eliminating the use of Pt is of prime importance. For current and forthcoming laboratory/large-scale PEMFCs, there is much interest in developing substitute catalysts based on cheaper materials. As such are non-platinum (non-Pt), non-platinum group metals (non-PGMs), metal oxides, and non-metal electrocatalysts. Hence, high-performance, state-of-the-art, and novel structured electrocatalysts as replacements for Pt are needed.  相似文献   
2.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
3.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
4.
We report a general template strategy for rational fabrication of a new class of nanostructured materials consisting of multicore shell particles. Our approach is demonstrated by encapsulating Au or Pt nanoparticles in silica shells. Other superstructures of these hollow shells, like dimers, trimers, and tetramers can also be formed by nanoparticle‐mediated self‐assembly. We have also used the as‐prepared multicore Au–silica hollow particles to perform the first studies of Ostwald ripening in confined microspace, in which chloride was found to be an efficient mediating ligand. After treatment with aqua regia, Au–Cl complex is formed inside the shell, and is found to be very active under in situ transmission electron microscopy observations while confined in a microcell. This aspect of the work is expected to motivate further in situ studies of confined crystal growth.  相似文献   
5.
This paper investigates the catalytic ignition of the H2/O2/CO2 mixture on platinum in a stagnation flow at atmospheric pressure experimentally and numerically. We measure the ignition temperatures of the gas mixtures flowing towards resistively heated platinum with various composition ratios and various diluent gases of N2, Ar and CO2. Compared with N2 or Ar, the CO2 dilution shows higher ignition temperature by about 50 K, even at the same composition ratio. The ignition temperature increase is proportional to the dilution ratio. Through the numerical simulation, it is illustrated that higher ignition temperature is caused by the adsorption of CO2 and following dissociation on platinum surface, which was to date considered negligible in catalytic combustion.  相似文献   
6.
This paper describes some of the key issues associated with the patterning of metal electrodes of sub-micron (especially at the critical dimension (CD) of 0.15 μm) dynamic random access memory devices. Due to reactive ion etching lag, the Pt etch rate decreased drastically below the CD of 0.20 μm and thus K-th storage node electrode with the CD of 0.15 μm could not be fabricated using the Pt electrodes. Accordingly, we have proposed novel techniques to surmountly-the above difficulties. The Ru electrode cannot for the stack-type structure is introduced and alternative multischemes based on the introduction of the concave-type selfstructure upto using semi-Pt or Ru as an electrode material are outlined respectively.  相似文献   
7.
Two commercial Pt modified aluminide coatings (RT22 and MDC150L) on the same single crystal Ni-based superalloy (CMSX-4) were studied by: scanning electron microscopy; transmission electron microscopy; energy dispersive X-ray spectrometry; and gravimetry. The RT22 coating is an inward grown coating (high activity), while MDC150L is produced by outward growth (low activity). Samples were oxidised in still laboratory air at 1050 °C for various times up to 2000 h. It was found that the outward grown coating produced a slower growing oxide that was more spallation resistant. Several possible reasons for this were identified including: coating purity; coating surface topography; and ductile to brittle transition temperature. The microstructural differences between the two coatings in the as-coated condition were investigated and the development of their microstructure during heat treatment was described. A model for coating growth during heat treatment was proposed.  相似文献   
8.
The presence of a second metal on platinum surfaces affects the performance of methanol oxidation. However, most of the electrocatalytic reactions are studied by using electrochemically deposited platinum alloys, but in the case of spontaneous deposition the situation is not so clear since the surface distribution, stability and morphology are usually not well documented. The formation of surface decorated samples on mono- and poly-crystalline platinum is followed by electrochemical and spectroscopic techniques and analysis of their performance towards methanol adsorption and oxidation compared with that on pure platinum. Pt/Sn and Pt/Ru are of special interest because of their well-known performance in methanol fuel cells. Methanol oxidation on Pt(111)/Ru, Pt(111)/Sn and Pt(111) shows that ruthenium is the only one able to promote the reaction since the simultaneous dissolution of tin occurs and competes with the process of interest. The in situ infrared spectroscopy is used to compare methanol oxidation on Pt(111)/Ru and Pt(111) in acid media using p-polarized light. The formation of bridge bound carbon monoxide is inhibited in the presence of ruthenium ad-species, whereas on Pt(111) the three adsorption configurations are observed. Linear sweep polarization curves and Tafel slopes (calculated from steady state potentiostatic plots) for methanol oxidation are compared on polycrystalline surfaces modified by tin or ruthenium at different coverages. There is almost no change in the Tafel slopes due to the presence of the foreign metal except for Pt/Ru, where a 0.09 V decade−1 slope was calculated below 0.55 V due to hydroxyl adsorbates on ruthenium islands. The anodic stripping of methanol residues on the three surfaces indicates a lower amount of carbon monoxide-type adsorbates on Pt/Ru, and the simultaneous tin dissolution process leading to residues oxidation on Pt/Sn electrodes.  相似文献   
9.
The addition of metallic Ir and Pt to a fullerene-forming, atmospheric-pressure plasma reactor was found to influence the generation of carbonaceous products. It was observed that the added metals were efficiently dispersed into the plasma and that their presence increased the yield of fullerenes. The addition of Ir led to a noticeable shift in the fullerene distribution towards C60, whereas the addition of Pt increased the proportion of C60 oxides and decreased the proportion of higher fullerenes. Addition of Ir also caused a reduction of the soot particle size and the formation of a considerable quantity of carbon nanotubes.  相似文献   
10.
测量了表面电阻值不同的两个电极试样的厚度及直流极化特性曲线,并由此分析了以表面电阻值作为电极评价指标的模糊性,提出了以电极极化程度来评价电极性能的概念。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号