首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   9篇
  国内免费   2篇
综合类   13篇
化学工业   110篇
机械仪表   1篇
建筑科学   5篇
矿业工程   2篇
能源动力   1篇
轻工业   1篇
石油天然气   9篇
武器工业   4篇
无线电   3篇
一般工业技术   5篇
原子能技术   1篇
自动化技术   2篇
  2022年   6篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2014年   8篇
  2013年   10篇
  2012年   8篇
  2011年   15篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   7篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   11篇
  2001年   7篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1951年   1篇
排序方式: 共有157条查询结果,搜索用时 93 毫秒
1.
本文阐述了通过Friedel-Crafts反应合成邻-(4-乙基苯甲酰基)苯甲酸的方法.研究了影响产物质量的因素,提出了适宜的工艺条件.  相似文献   
2.
介绍了使用顶空-气相色谱法检测水中一氯苯的方法。该方法使氯苯分子在气液两相之间、在一定温度下达到了动态平衡。此时,一氯苯在气相中的浓度与它在液相中的浓度成正比。通过测定气相中一氯苯的浓度,即可计算出水样中氯苯的浓度。使用该方法可以直接测定水样,与国标方法相比,它无需琐碎的前处理过程,避免了实验人员与有毒有害溶剂的接触,而且测定结果稳定性较好,能够满足测定需求。  相似文献   
3.
为了得到高纯度的氯苯和二氯苯的同分异构体,本文采用连续侧线出料精馏法从氯苯和二氯苯同分异构体的混合物中分离出氯苯,并为继续分离混合二氯苯提供了基础.本文详细考察了多种因素对连续侧线出料精馏过程的影响,最终确定的最佳操作条件为:进料温度90℃,进料速率2.00ml/min,塔顶采出量0.30ml/min,塔高50 cm(H1=20cm,H2=30 cm).结果表明,在最佳条件下,塔顶氯苯纯度可以达到99.12%,塔顶氯苯得率达到88.12%,塔底二氯苯同分异构体纯度达到97.86%.本文研究结果为进一步提纯二氯苯提供了条件.  相似文献   
4.
介绍了氯化苯生产过程中"三废"的回收利用改造情况,总结了废水、废气、废渣回收改造的过程、特点和效益,经过改造实现了氯苯生产过程的清洁化和废物的资源化。  相似文献   
5.
张晓啸  尚振华  张向京 《化工进展》2022,41(9):5022-5028
芳香族化合物的硝化是快速、强放热反应,采用连续硝化工艺可降低间歇操作可能引起的潜在风险。本文采用可视化方法和计算流体力学(CFD)模拟研究微管内流动状况的基础上,在体积为10mL的微管反应器中进行了氯苯连续硝化反应,探究了停留时间、温度、混酸比(硝酸与硫酸的摩尔比)、相比(硝酸与氯苯的摩尔比)对反应转化率、收率、产物邻对比和选择性的影响。结果表明,氯苯和混酸两相在内径为1mm的微通道内呈现出的Taylor流流型可以强化传质传热的效率,提高宏观反应速率。在停留时间为8min、温度80℃、混酸比=1∶1.5、相比=1∶1时,产物中邻对比在0.7~0.8之间,氯苯单程转化率为81.24%,一硝基氯苯的选择性为93.77%。采用连续硝化后,反应停留时间大幅降低,一硝基氯苯的邻对比明显提高。相比于传统釜式工艺,微管反应器内连续硝化更加安全、高效。  相似文献   
6.
气相色谱法测定水中氯苯类化合物   总被引:2,自引:0,他引:2  
建立了一种用气相色谱法测定水和废水中5种氯苯类化合物的方法。水样用二硫化碳萃取,萃取液经无水硫酸钠脱水后在适宜的色谱条件下进样分析,5种氯苯类化合物的回收率为92.3%~102.5%,精密度为2.4%~3.8%。该方法具有方便、快速、干扰少、灵敏度高等特点,可用于水和废水中氯苯类化合物的测定。  相似文献   
7.
工业传统混酸硝化法严重腐蚀设备和污染环境,同时对硝基氯苯选择性较低,针对这个问题,研究了在HZSM-5分子筛催化下,五氧化二氮对氯苯的硝化反应。由于HZSM-5优异的择形性,对硝基氯苯在硝化产物中的比例从原先的42%提高到81%。实验考察了反应温度、反应时间、催化剂用量及Si/Al等因素对反应结果的影响。研究表明,在温度为50℃,时间为1h,5gSi/Al质量比为260的催化剂HZSM-5作用下,反应条件最佳,此时氯苯硝化反应得率达到50%,对位选择性为85%。  相似文献   
8.
介绍了氯化苯生产过程中水洗酸废水综合利用的情况,通过工艺改造,实现了废酸的零排放,且具有显著的经济和社会效益。  相似文献   
9.
介绍了氯苯副产盐酸中微量苯和氯苯含量的测定方法、测定过程及测定结果。  相似文献   
10.
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号