首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   3篇
化学工业   18篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  1995年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
An analysis of 503 available triosephosphate isomerase sequences revealed nine fully conserved residues. Of these, four residues—K12, H95, E97 and E165—are capable of proton transfer and are all arrayed around the dihydroxyacetone phosphate substrate in the three‐dimensional structure. Specific roles have been assigned to the residues K12, H95 and E165, but the nature of the involvement of E97 has not been established. Kinetic and structural characterization is reported for the E97Q and E97D mutants of Plasmodium falciparum triosephosphate isomerase (Pf TIM). A 4000‐fold reduction in kcat is observed for E97Q, whereas the E97D mutant shows a 100‐fold reduction. The control mutant, E165A, which lacks the key catalytic base, shows an approximately 9000‐fold drop in activity. The integrity of the overall fold and stability of the dimeric structure have been demonstrated by biophysical studies. Crystal structures of E97Q and E97D mutants have been determined at 2.0 Å resolution. In the case of the isosteric replacement of glutamic acid by glutamine in the E97Q mutant a large conformational change for the critical K12 side chain is observed, corresponding to a trans‐to‐gauche transition about the Cγ? Cδ (χ3) bond. In the E97D mutant, the K12 side chain maintains the wild‐type orientation, but the hydrogen bond between K12 and D97 is lost. The results are interpreted as a direct role for E97 in the catalytic proton transfer cycle. The proposed mechanism eliminates the need to invoke the formation of the energetically unfavourable imidazolate anion at H95, a key feature of the classical mechanism.  相似文献   
3.
The sucrose isomerase SmuA from Serratia plymuthica efficiently catalyses the isomerisation of sucrose into isomaltulose, an artificial sweetener used in the food industry. However, the formation of a hygroscopic by-product, trehalulose, necessitates additional separation to obtain a crystalline product. Therefore, we have improved the product specificity of SmuA by first introducing a few exploratory amino acid exchanges around the active site and investigating their influence. Then, we devised a second set of mutations, either at promising positions from the preceding cycle, but with a different side chain, or at alternative positions in the vicinity. After seven iterative cycles involving just 55 point mutations, we obtained the triple mutant Y219L/D398G/V465E which showed 2.3 times less trehalulose production but still had high catalytic efficiency (kcat/KM=11.8 mM−1 s−1). Not only does this mutant SmuA appear attractive as an industrial biocatalyst, but our semirational protein-engineering strategy, which resembles the battleship board game, should be of interest for other challenging enzyme optimization endeavours.  相似文献   
4.
The protein disulfide isomerase (PDI) family, found in the endoplasmic reticulum (ER) of the eukaryotic cell, catalyzes the formation and cleavage of disulfide bonds and thereby helps in protein folding. A decrease in PDI activity under ER stress conditions leads to protein misfolding, which is responsible for the progression of various human diseases, such as Alzheimer's, Parkinson's, diabetes mellitus, and atherosclerosis. Here we report that water‐soluble cyclic diselenides mimic the multifunctional activity of the PDI family by facilitating oxidative folding, disulfide formation/reduction, and repair of the scrambled disulfide bonds in misfolded proteins.  相似文献   
5.
In order to regulate the activity of P5, which is a member of the protein disulfide isomerase family, we screened a chemical compound library for P5‐specific inhibitors, and identified two candidate compounds (anacardic acid and NSC74859). Interestingly, anacardic acid inhibited the reductase activity of P5, but did not inhibit the activity of protein disulfide isomerase (PDI), thiol‐disulfide oxidoreductase ERp57, or thioredoxin. NSC74859 inhibited all these enzymes. When we examined the effects of these compounds on the secretion of soluble major histocompatibility complex class‐I‐related gene A (MICA) from cancer cells, anacardic acid was found to decrease secretion. In addition, anacardic acid was found to reduce the concentration of glutathione up‐regulated by the anticancer drug 17‐demethoxygeldanamycin in cancer cells. These results suggest that anacardic acid can both inhibit P5 reductase activity and decrease the secretion of soluble MICA from cancer cells. It might be a novel and potent anticancer treatment by targeting P5 on the surface of cancer cells.  相似文献   
6.
Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins.  相似文献   
7.
Understanding the structure and mechanism of sugar nucleotide processing enzymes is invaluable in the generation of designer enzymes for biotransformation, for instance, in connection with engineering antibiotic glycosylation. In this study, homology modelling and mechanistic comparison to the structurally related RmlC epimerase family has been used to identify and assign functions to active-site residues in the Tyl1a-catalysed keto-sugar nucleotide isomerisation process. Tyl1a His63 is implicated as the base that initiates the isomerisation process by substrate C-3 deprotonation, with Arg109 stabilising the resulting enolate. Subsequent O-3 deprotonation (potentially by His65) and C-4 protonation (potentially by Tyr49) complete the isomerisation process.  相似文献   
8.
The biotransformation of linoleic acid (LA) into conjugated linoleic acid (CLA) by microorganisms is a potentially useful industrial process. In most cases, however, the identities of proteins involved and the details of enzymatic activity regulation are far from clear. Here we summarize available data on the reaction mechanisms of CLA-producing enzymes characterized until now, from Butyrivibrio fibrisolvens, Lactobacillus acidophilus, Ptilota filicina, and Propionibacterium acnes. A general feature of enzymatic LA isomerization is the protein-assisted abstraction of an aliphatic hydrogen atom from position C-11, while the role of flavin as cofactor for the double bond activation in CLA-producing enzymes is also discussed with regard to the recently published three-dimensional structure of an isomerase from P. acnes. Combined data from structural studies, isotopic labeling experiments, and sequence comparison suggest that at least two different prototypical active site geometries occur among polyunsaturated fatty acid (PUFA) double bond isomerases.  相似文献   
9.
An unexpected, redox‐neutral C?C bond isomerization of a γ‐butyrolactone bearing an exo‐methylene unit to the thermodynamically more favoured endo isomer (kcat=0.076 s?1) catalysed by flavoproteins from the Old Yellow Enzyme family was discovered. Theoretical calculations and kinetic data support a mechanism through which the isomerization proceeds through FMN‐mediated hydride addition onto exo‐Cβ, followed by hydride abstraction from endo‐Cβ′, which is in line with the well‐established C?C bond bioreduction of OYEs. This new isomerase activity enriches the catalytic versatility of ene‐reductases.  相似文献   
10.
Studies of the interactions of dienelactone hydrolase (DLH) and its mutants with both E and Z dienelactone substrates show that the enzyme exhibits two different conformational responses specific for hydrolysis of each of its substrate isomers. DLH facilitates hydrolysis of the Z dienelactone through an unusual charge-relay system that is initiated by interaction between the substrate carboxylate and an enzyme arginine residue that activates an otherwise non-nucleophilic cysteine. The E dienelactone does not display this substrate-arginine binding interaction, but instead induces an alternate conformational response that promotes hydrolysis. Furthermore, the substitution of cysteine 123 for serine (C123S) in DLH, instead of inactivating the enzyme as is typical for this active-site mutation, changes the catalysis from substrate hydrolysis to isomerisation. This is due to the deacylation of the acyl-enzyme intermediates being much slower, thereby increasing their lifetimes and allowing for their interconversion through isomerisation, followed by relactonisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号