首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
综合类   2篇
化学工业   16篇
轻工业   23篇
一般工业技术   1篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   8篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有42条查询结果,搜索用时 26 毫秒
1.
The different melting temperatures of N‐methyl morpholine N‐oxide (NMMO) hydrates in the cellulose–NMMO hydrate solution may be explained by the rather different crystal structures of NMMO hydrates, which are determined by the amount of the hydrates. The preparative process of cellulose–NMMO hydrate solution may result in cellulose structural change from cellulose I to cellulose II, depending on the amount of the hydrate. Mixtures of cellulose and NMMO hydrate in a blender was changed from the granules to slurry with increasing mixing time at 60–70°C, which is below the melting point of the NMMO hydrate. In the case of 15 wt % cellulose–NMMO hydrate granules, which were made by mixing for 20 min, the melting points of various NMMO hydrates were obtained as 77.8°C (n = 0.83), 70.2°C (n = 0.97), and 69.7°C (n = 1.23), respectively, depending on the hydrate number. However, the melting points of cellulose–NMMO hydrate slurry and solution were shifted lower than those of cellulose granules, while the mixing time of slurry and solution are 25 and 35 min, respectively. These melting behaviors indicate instantaneous liquefaction of the NMMO hydrate and the diffusion of the NMMO hydrate into cellulose during mixing in a blender. When cellulose was completely dissolved in NMMO hydrate, the crystal structure of cellulose showed only cellulose II structure. In the cellulose–NMMO products of granules or slurry obtained by high‐speed mixing, which is a new preparation method, they still retained the original cellulose I structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1687–1697, 2004  相似文献   
2.
The thermosensitive properties of the hydrogel poly(N‐isopropylacrylamide) (pNIPAAm) together with the good mechanical properties of lyocell fibres make a combination of the two to be thought of as a smart textile. In the present study the optimal values of various parameters that control the grafting process of pNIPAAm onto lyocell fibres were determined considering the influence of the interaction between them. The copolymerization of pNIPAAm hydrogel onto lyocell fibres was performed in aqueous acidic medium using cerium(IV) as initiator. An experimental design was planned in order to study the effect of the interactions between some variables that affect the kinetics of the graft copolymerization: the cerium(IV) initiator concentration, the N‐isopropylacrylamide (NIPAAm) monomer concentration and the liquor fibre‐to‐bath ratio. The results show that the interaction between the concentrations of NIPAAm and the initiator significantly affects the degree of grafting (DG), the optimum values being 1250 and 12.25 mmol L?1, respectively. In contrast, the liquor ratio parameter shows no significant interaction with the other two variables studied, meaning that it acts independently but showing a proportional relationship with respect to the DG obtained. In addition, the presence of pNIPAAm in the copolymer obtained was confirmed by Fourier transform infrared spectral analysis. Moreover, the water sorption capacity, depending on the temperature, of the lyocell/pNIPAAm copolymer was studied, with an increase being observed when the DG is higher than 60% and also increasing with the temperature.© 2012 Society of Chemical Industry  相似文献   
3.
Lyocell纤维——减少原纤化的替代方法   总被引:5,自引:0,他引:5  
除了用树脂整理来减少Lyocell纤维原纤化之外,还存在其他可能,本文对 可能性进行了研究。反应性染料由于结构和浓度因素而影响原纤维化性能,甚至连无色的反应性物质也能对此造成影响,这很容易由Lyocell纤维的湿态抗原纤维所证实。对抗皱与洗旧性也进行了评价。  相似文献   
4.
介绍了世界主要地毯市场的需求.分析了对现用地毯材料的处理中存在的问题.阐述了Tencel纤维独具的性能,以及利用Tencel纤维生产地毯的前景.  相似文献   
5.
对棉和莱赛尔纤维混纺织物纤维含量测定的不确定度进行了评定,得出了日常检验时平行检验多份试样,可显著减少测量不确定度、提高检验结果准确性的结论。  相似文献   
6.
运用灰色系统方法对新型纤维素原丝Lyocell纤维的性能与碳纤维强度之间的关系进行了关联分析,结果表明:Lyocell纤维的强度、纤度和断裂强力对碳纤维的强度有很大的影响,而对伸长和模量的影响较小。  相似文献   
7.
The influences of the treatments with various polymers on fibrillation and abrasion resistances of lyocell materials were investigated with respect to the type of polymer, the polymer concentration, and the drying temperature. Fibril number, generated with agitation using ball‐bearings (FNball), was decreased with increasing the concentration of aminofunctional polysiloxane because of reduction in water retention capacity (WRV) in fibers. The never‐dried lyocell fiber showed smaller decrease in FNball because of its higher WRV when compared to dried fibers. The treatment with aminofunctional polysiloxane enhanced not only the fibrillation resistance but also abrasion resistance, which was indicated as rotation number of abrasive bar in the abrasion test (RNabr). No fibrillation was obtained in the fiber treated with 10 g/L aminofunctional polysiloxane at 120°C for 20 min, while the fibers treated at 60 and 170°C for 15 min were fibrillated in the agitation and abrasion tests. The addition of secondary polyethylene derivative also reduced the fibrillation tendency of lyocell; however, the extent of the reduction was lesser when compared with aminofunctional polysiloxane. The treatments with polyacrylate, polyurethane, and polyisocyanate derivatives improved the fibrillation resistance in lyocell fabrics, while fiber abrasion resistance was not significantly improved by the treatment with those additives, except in polyisocyanate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4140–4147, 2006  相似文献   
8.
In this article, lyocell fiber is used as a precursor for carbon fiber. The mechanical properties of lyocell fiber and tenacity of carbon fiber from this precursor have been determined. Gray-relation analysis is used to investigate the relation between precursor's properties and the strength of the carbon fibers. The results suggested that the strength, force at breaking, and fineness of precursor have greater influence on the strength of carbon fibers than precursor's elongation, and modulus.  相似文献   
9.
Lenzing公司Lyocell纤维专利分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文论述了Lyocell纤维的产业概况及生产工艺.以Lyocell纤维行业巨头奥地利Lenzing公司专利为研究目标,对其进行全面检索,分析其专利申请概况、布局情况、技术主题分布情况等,并在此基础上提出建议和措施以供国内相关企业借鉴.  相似文献   
10.
The mechanical properties and morphologies of polyblends of lyocell with three different fillers are compared. Poly(vinyl alcohol) (PVA), poly(vinyl alcohol‐co‐ethylene) (EVOH), and poly(acrylic acid‐co‐maleic acid) (PAM) were used as fillers in blends with lyocell produced through solution blending. The variations of their properties with polymer matrix filler content are discussed. The ultimate tensile strength of the PVA/lyocell blend is highest for a blend lyocell content of 30 wt %, and decreases as the lyocell content is increased up to 40 wt %. The ultimate tensile strengths of the EVOH/lyocell and PAM/lyocell blends are highest for a lyocell loading of 20 wt %, and decrease with the increasing filler content. The variations in the initial moduli of the blends with filler content are similar. Of the three blend systems, the blends with PVA exhibit the best tensile properties. Lyocell/organoclay hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium–Mica (C12PPh‐ Mica) as the organoclay. The variation of the mechanical tensile properties of the hybrids with the matrix polymer organoclay content was examined. These properties were found to be optimal for an organoclay content of up to 5 wt %. Even polymers with low organoclay contents exhibited better mechanical properties than pure lyocell. The addition of organoclay to lyocell to produce nanocomposite films was found to be less effective in improving its ultimate tensile strength than blending lyocell with the polymers. However, the initial moduli of the nanocomposites were found to be higher than those of the polyblend films. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号